cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A077320 Triangle in which n-th row contains n smallest multiples of the n-th prime.

Original entry on oeis.org

2, 3, 6, 5, 10, 15, 7, 14, 21, 28, 11, 22, 33, 44, 55, 13, 26, 39, 52, 65, 78, 17, 34, 51, 68, 85, 102, 119, 19, 38, 57, 76, 95, 114, 133, 152, 23, 46, 69, 92, 115, 138, 161, 184, 207, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290
Offset: 1

Views

Author

Amarnath Murthy, Nov 04 2002

Keywords

Comments

0. A000040 (primes) gives initial terms of rows.
1. A033286 contains the final terms of rows.
2. Sum of the n-th row = prime(n)*A000217(n), by definition.
3. a(A000217(n) + 1) = prime(n+1), by definition.

Examples

			From _Bruno Berselli_, Sep 05 2017: (Start)
Triangle begins:
   2;
   3, 6;
   5, 10,  15;
   7, 14,  21,  28;
  11, 22,  33,  44,  55;
  13, 26,  39,  52,  65,  78;
  17, 34,  51,  68,  85, 102, 119;
  19, 38,  57,  76,  95, 114, 133, 152;
  23, 46,  69,  92, 115, 138, 161, 184, 207;
  29, 58,  87, 116, 145, 174, 203, 232, 261, 290;
  31, 62,  93, 124, 155, 186, 217, 248, 279, 310, 341;
  37, 74, 111, 148, 185, 222, 259, 296, 333, 370, 407, 444;
  41, 82, 123, 164, 205, 246, 287, 328, 369, 410, 451, 492, 533;
  43, 86, 129, 172, 215, 258, 301, 344, 387, 430, 473, 516, 559, 602, etc.
(End)
		

Crossrefs

Row sums give A196421. - Omar E. Pol, Mar 12 2012

Programs

  • Mathematica
    Table[Prime[n]*Range[n], {n, 10}] // Flatten (* Ivan Neretin, May 02 2019 *)

Formula

T(n,k) = k*prime(n) with 1 <= k <= n. - Bruno Berselli, Sep 05 2017

A085783 Product of a prime and a triangular number.

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 20, 21, 23, 29, 30, 31, 33, 37, 39, 41, 42, 43, 45, 47, 50, 51, 53, 56, 57, 59, 61, 63, 66, 67, 69, 70, 71, 72, 73, 75, 78, 79, 83, 84, 87, 89, 90, 93, 97, 101, 102, 103, 105, 107, 108, 109, 110, 111
Offset: 1

Views

Author

Jon Perry, Jul 23 2003

Keywords

Examples

			15 = 5*t(2) is a term.
		

Crossrefs

A196421 is a subsequence. - Michel Marcus, May 15 2018

Programs

  • Maple
    N:= 200: # for all terms <= N
    T:= [seq(i*(i+1)/2,i=1..floor((sqrt(4*N+1)-1)/2))]:
    P:= select(isprime,[2,seq(i,i=3..N,2)]):
    sort(select(`<=`,convert({seq(seq(p*t,p=P),t=T)},list),N)); # Robert Israel, May 15 2018

Extensions

107 and 109 inserted by Robert Israel, May 15 2018

A196303 Primes p such that (p-1)*2^p+1 is also prime.

Original entry on oeis.org

2, 3, 7, 1471, 1483, 61627, 88651
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 02 2011

Keywords

Examples

			a(1) = 2 because 2 and (2-1)*2^2 + 1 = 5 are both prime.
a(2) = 3 because 3 and (3-1)*2^3 + 1 = 17 are both prime.
a(3) = 7 because 7 and (7-1)*2^7 + 1 = 769 are both prime.
		

Crossrefs

Prime terms of A128001.

Programs

  • Mathematica
    Select[Prime[Range[9000]],PrimeQ[(#-1)2^#+1]&] (* Harvey P. Dale, Jan 19 2012 *)
  • PARI
    forprime(n=1,1e4,if(ispseudoprime((n-1)<Charles R Greathouse IV, Oct 09 2011

Extensions

a(7) corrected by Michael S. Branicky, May 14 2025

A378493 Dot product of the first n primes and the first n triangular numbers.

Original entry on oeis.org

2, 11, 41, 111, 276, 549, 1025, 1709, 2744, 4339, 6385, 9271, 13002, 17517, 23157, 30365, 39392, 49823, 62553, 77463, 94326, 114313, 137221, 163921, 195446, 230897, 269831, 313273, 360688, 413233, 476225, 545393, 622250, 704955, 798825, 899391, 1009762
Offset: 1

Views

Author

Harvey P. Dale, Nov 28 2024

Keywords

Examples

			a(3) = dot product of {2,3,5} and {1,3,6} = 2*1+3*3+5*6 = 41.
		

Crossrefs

Partial sums of A196421.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 0,
          a(n-1)+ithprime(n)*n*(n+1)/2)
        end:
    seq(a(n), n=1..37);  # Alois P. Heinz, Nov 28 2024
  • Mathematica
    Table[Prime[Range[n]].Accumulate[Range[n]],{n,50}]

Formula

a(n) mod 2 = A166486(n-1).

A356868 a(n) = n^2 * prime(n).

Original entry on oeis.org

2, 12, 45, 112, 275, 468, 833, 1216, 1863, 2900, 3751, 5328, 6929, 8428, 10575, 13568, 17051, 19764, 24187, 28400, 32193, 38236, 43907, 51264, 60625, 68276, 75087, 83888, 91669, 101700, 122047, 134144, 149193, 160684, 182525, 195696, 214933, 235372, 254007, 276800, 300899
Offset: 1

Views

Author

Alex Ratushnyak, Sep 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2 * Prime[n]; Array[a, 40] (* Amiram Eldar, Sep 02 2022 *)
  • Python
    from sympy import prime
    def a(n): return n**2 * prime(n)
    print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Sep 01 2022
Showing 1-5 of 5 results.