cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196525 Decimal expansion of log(1+sqrt(2))/sqrt(2).

Original entry on oeis.org

6, 2, 3, 2, 2, 5, 2, 4, 0, 1, 4, 0, 2, 3, 0, 5, 1, 3, 3, 9, 4, 0, 2, 0, 0, 8, 0, 2, 5, 0, 5, 6, 8, 0, 0, 2, 6, 5, 0, 6, 9, 5, 3, 1, 2, 3, 4, 6, 5, 6, 7, 2, 5, 2, 8, 9, 8, 7, 1, 4, 7, 7, 6, 0, 9, 6, 1, 7, 0, 0, 0, 4, 5, 4, 7, 0, 1, 4, 1, 8, 0, 4, 6, 7, 6, 6, 9, 0, 7, 3, 2, 3, 5, 6, 2, 6, 6
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Examples

			0.6232252401402305133940200802505680... = A091648/A002193.
From _Peter Bala_, Dec 01 2021: (Start)
With N = 10000, the truncated series Sum_{k = 0..N/4 - 1} (-1)^k/((4*k + 1)*(4*k+3)) = 0.6232252[3]014023[16]1339[3659]080... to 27 decimal places. The square bracketed numbers show where this decimal expansion differs from that of (1/sqrt(2))*log(1+sqrt(2)) = 0.6232252(4)014023(05) 1339(4020)080.... The numbers 1, -11, 361 must be added to the square bracketed numbers to give the correct decimal expansion to 27 decimal places. (End)
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(Sqrt(2)+1)/Sqrt(2); // G. C. Greubel, Oct 05 2018
  • Mathematica
    RealDigits[Log[1+Sqrt[2]]/Sqrt[2],10,120][[1]] (* Harvey P. Dale, Dec 27 2011 *)
    RealDigits[Sum[1/((2 n - 1) 2^n), {n, 1, Infinity}], 10, 120][[1]] (* Fred Daniel Kline, May 23 2019 *)
  • PARI
    log(sqrt(2)+1)/sqrt(2) \\ Michel Marcus, Sep 27 2017
    

Formula

Equals Sum_{n>=1} A091337(n)/n = 1 - 1/3 - 1/5 + 1/7 + 1/9 - 1/11 - ...
Equals 2*Sum_{n>=1} (-1)^n/A001539(n). - Michel Marcus, Sep 27 2017
From Fred Daniel Kline, May 23 2019: (Start)
Equals arcsinh(1)/sqrt(2).
Equals Sum_{n>=1} 1/A118417(n-1) = Sum_{n>=1} 1/((2*n - 1)*2^n). (End)
From Peter Bala, Nov 01 2019: (Start)
Equals (1/sqrt(2))*arccoth(sqrt(2)).
Equals 1 - 8*Sum_{n >= 0} (-1)^(n+1)*n/(16*n^2 - 1).
Equals 1 - Integral_{x = 0..inf} exp(-2*x)*cosh(x)/cosh(2*x) dx.
Equals 2*Integral_{x = 0..inf} exp(x)*(exp(2*x) + 1)*(exp(4*x) - 1)/(exp(4*x) + 1)^2 dx - 1. (End)
From Amiram Eldar, Aug 16 2020: (Start)
Equals Sum_{k>=0} (-1)^k * (2*k)!!/(2*k+1)!!.
Equals Integral_{x=0..Pi/4} 1/(cos(x) + sin(x)) dx. (End)
From Peter Bala, Dec 01 2021: (Start)
Equals 2*Sum_{k >= 0} (-1)^k/((4*k + 1)*(4*k + 3)).
Let N be a positive integer divisible by 4. We have the asymptotic expansion (1/sqrt(2))*log(1 + sqrt(2)) - 2*Sum_{k = 0..N/4 - 1} (-1)^k/((4*k + 1)*(4*k + 3)) ~ 1/N^2 - 11/N^4 + 361/N^6 - 24611/N^8 + ..., where the sequence of unsigned coefficients [1, 11, 361, 24611, ...] is A000464. See A181048 and A181049. An example is given below. (End)
Equals 1/Product_{p prime} (1 - Kronecker(8,p)/p), where Kronecker(8,p) = 0 if p = 2, 1 if p == 1 or 7 (mod 8) or -1 if p == 3 or 5 (mod 8). - Amiram Eldar, Dec 17 2023
Equals integral_{x=0..Pi/2} sin^2(x)/(sin(x)+cos(x)) dx [Nahin]. - R. J. Mathar, May 16 2024