cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A196550 Decimal expansion of the number x satisfying x*2^x=3.

Original entry on oeis.org

1, 2, 5, 6, 0, 5, 8, 6, 5, 9, 3, 9, 1, 7, 4, 5, 2, 3, 8, 0, 2, 4, 1, 6, 7, 4, 6, 2, 3, 4, 2, 1, 3, 3, 7, 1, 1, 1, 1, 3, 3, 3, 7, 0, 2, 0, 0, 8, 9, 6, 5, 5, 8, 6, 4, 3, 5, 6, 3, 0, 0, 6, 3, 5, 6, 5, 9, 0, 4, 7, 5, 1, 6, 1, 5, 9, 4, 3, 5, 6, 2, 7, 3, 1, 8, 1, 8, 3, 0, 3, 8, 3, 7, 6, 4, 6, 6, 6, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Oct 03 2011

Keywords

Examples

			x=1.25605865939174523802416746234213371111333...
		

Programs

  • Mathematica
    Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
    t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A104748 *)
    t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196549 *)
    t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196550 *)
    t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196551 *)
    t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196552 *)
    t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196553 *)
    RealDigits[ ProductLog[ Log[8] ] / Log[2], 10, 100] // First (* Jean-François Alcover, Feb 27 2013 *)

A196551 Decimal expansion of the number x satisfying x*2^x=4.

Original entry on oeis.org

1, 4, 5, 6, 9, 9, 9, 5, 5, 9, 1, 3, 4, 5, 9, 1, 8, 2, 6, 2, 5, 3, 2, 2, 3, 0, 2, 5, 6, 9, 4, 2, 5, 5, 4, 0, 8, 6, 4, 9, 8, 5, 9, 7, 2, 5, 5, 8, 1, 9, 9, 6, 4, 3, 4, 9, 8, 1, 1, 3, 5, 9, 6, 7, 4, 0, 4, 5, 5, 9, 4, 7, 0, 1, 8, 8, 1, 5, 9, 0, 6, 9, 7, 5, 2, 4, 0, 6, 0, 3, 9, 2, 7, 6, 8, 6, 8, 8, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Oct 03 2011

Keywords

Examples

			x=1.4569995591345918262532230256942554086498597255...
		

Programs

  • Mathematica
    Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
    t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A104748 *)
    t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196549 *)
    t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196550 *)
    t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196551 *)
    t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196552 *)
    t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196553 *)
    RealDigits[ ProductLog[ Log[16] ] / Log[2], 10, 100] // First (* Jean-François Alcover, Feb 27 2013 *)

A196552 Decimal expansion of the number x satisfying x*2^x=5.

Original entry on oeis.org

1, 6, 2, 3, 1, 4, 0, 3, 4, 5, 9, 6, 9, 0, 3, 6, 6, 7, 0, 9, 4, 2, 3, 3, 4, 4, 0, 4, 1, 6, 1, 9, 6, 5, 6, 3, 4, 8, 2, 6, 2, 9, 8, 7, 3, 7, 7, 9, 7, 9, 5, 9, 9, 3, 4, 7, 2, 4, 5, 5, 4, 6, 8, 2, 8, 7, 8, 3, 9, 6, 5, 8, 6, 6, 7, 2, 5, 3, 9, 2, 5, 9, 4, 5, 7, 4, 2, 6, 7, 3, 7, 4, 6, 7, 9, 5, 5, 9, 0, 8
Offset: 1

Views

Author

Clark Kimberling, Oct 03 2011

Keywords

Examples

			x=1.62314034596903667094233440416196563482629873...
		

Programs

  • Mathematica
    Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
    t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A104748 *)
    t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196549 *)
    t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196550 *)
    t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196551 *)
    t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196552 *)
    t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196553 *)
    RealDigits[ ProductLog[ Log[32] ] / Log[2], 10, 100] // First (* Jean-François Alcover, Feb 27 2013 *)

A196553 Decimal expansion of the number x satisfying x*2^x=6.

Original entry on oeis.org

1, 7, 6, 5, 1, 6, 1, 9, 4, 8, 2, 5, 6, 6, 9, 9, 1, 3, 7, 1, 8, 5, 0, 5, 5, 7, 0, 3, 2, 8, 6, 4, 6, 5, 2, 8, 1, 8, 0, 0, 7, 3, 5, 6, 2, 0, 0, 3, 2, 7, 1, 8, 7, 7, 2, 9, 5, 0, 5, 5, 9, 5, 9, 2, 4, 8, 4, 5, 8, 3, 8, 5, 4, 9, 4, 0, 9, 3, 1, 5, 1, 5, 4, 5, 2, 2, 3, 3, 3, 8, 3, 4, 8, 3, 0, 1, 6, 8, 6, 6
Offset: 1

Views

Author

Clark Kimberling, Oct 03 2011

Keywords

Examples

			x=1.765161948256699137185055703286465281800...
		

Programs

  • Mathematica
    Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
    t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A104748 *)
    t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196549 *)
    t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196550 *)
    t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196551 *)
    t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196552 *)
    t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196553 *)
    RealDigits[ ProductLog[ 6*Log[2] ] / Log[2], 10, 100] // First (* Jean-François Alcover, Feb 27 2013 *)

Extensions

Digits from a(94) on corrected by Jean-François Alcover, Feb 27 2013
Showing 1-4 of 4 results.