A196563 Number of even digits in decimal representation of n.
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Zachary P. Bradshaw and Christophe Vignat, Dubious Identities: A Visit to the Borwein Zoo, arXiv:2307.05565 [math.HO], 2023.
Crossrefs
Programs
-
Haskell
a196563 n = length [d | d <- show n, d `elem` "02468"] -- Reinhard Zumkeller, Feb 22 2012, Oct 04 2011
-
Maple
A196563 := proc(n) if n =0 then 1; else convert(n,base,10) ; add(1-(d mod 2),d=%) ; end if: end proc: # R. J. Mathar, Jul 13 2012
-
Mathematica
Table[Count[Mod[IntegerDigits[n],2],0][n],{n,0,100}] (* Zak Seidov, Oct 13 2015 *) Table[Count[IntegerDigits[n],?EvenQ],{n,0,120}] (* _Harvey P. Dale, Feb 22 2020 *)
-
PARI
a(n) = #select(x->(!(x%2)), if (n, digits(n), [0])); \\ Michel Marcus, Oct 14 2015
-
Python
def a(n): return sum(1 for d in str(n) if d in "02468") print([a(n) for n in range(100)]) # Michael S. Branicky, May 15 2022
Formula
From Hieronymus Fischer, May 30 2012: (Start)
a(n) = Sum_{j=0..m} (1 + floor(n/(2*10^j)) - floor(n/(2*10^j) + (1/2))), where m=floor(log_10(n)).
a(10*n+k) = a(n) + a(k), 0<=k<10, n>=1.
a(n) = a(floor(n/10))+a(n mod 10), n>=10.
a(n) = Sum_{j=0..m} a(floor(n/10^j) mod 10), n>=0.
a(A014263(n)) = 1 + floor(log_5(n-1)), n>1.
G.f.: g(x) = 1 + (1/(1-x))*Sum_{j>=0} x^(2*10^j)/(1+x^10^j). (End)