A201397 Decimal expansion of x satisfying x^2 + 2 = sec(x) and 0 < x < Pi.
1, 2, 9, 5, 4, 5, 9, 6, 4, 6, 4, 1, 5, 4, 7, 8, 7, 6, 8, 6, 2, 9, 9, 1, 3, 2, 7, 0, 7, 1, 8, 6, 4, 1, 5, 8, 9, 7, 6, 7, 2, 7, 4, 8, 2, 7, 0, 6, 8, 7, 1, 3, 1, 6, 1, 6, 0, 5, 1, 8, 1, 4, 3, 0, 2, 1, 7, 4, 9, 5, 1, 2, 6, 5, 9, 9, 3, 0, 9, 5, 5, 9, 7, 8, 6, 7, 4, 3, 9, 4, 7, 1, 9, 8, 8, 4, 7, 9, 9
Offset: 1
Examples
1.2954596464154787686299132707186415897672...
Programs
-
Mathematica
(* Program 1: A201397 *) a = 1; c = 2; f[x_] := a*x^2 + c; g[x_] := Sec[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110] RealDigits[r] (* A201397 *) (* Program 2: implicit surface of u*x^2+v=sec(x) *) Remove["Global`*"]; f[{x_, u_, v_}] := u*x^2 + v - Sec[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .1, 1}]}, {v, 0, 1}, {u, 2 + v, 10}]; ListPlot3D[Flatten[t, 1]] (* for A201397 *)
Comments