cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A196816 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=cos(x).

Original entry on oeis.org

1, 1, 0, 2, 5, 0, 5, 8, 2, 4, 4, 0, 6, 4, 1, 6, 0, 4, 3, 5, 7, 1, 0, 5, 0, 1, 5, 5, 0, 2, 2, 2, 2, 4, 0, 7, 3, 8, 8, 4, 8, 1, 0, 5, 8, 2, 0, 0, 9, 7, 7, 5, 1, 1, 6, 0, 8, 5, 3, 7, 5, 3, 7, 1, 4, 7, 6, 3, 5, 2, 2, 9, 5, 8, 5, 5, 8, 8, 3, 9, 6, 0, 3, 3, 1, 5, 5, 3, 6, 1, 0, 8, 1, 4, 9, 4, 8, 3, 2, 8
Offset: 1

Views

Author

Clark Kimberling, Oct 06 2011

Keywords

Examples

			1.10250582440641604357105015502222407388481058200...
		

Crossrefs

Programs

  • Mathematica
    Plot[{1/(1 + x^2), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2}]
    t = x /. FindRoot[1 == (1 + x^2) Cos[x], {x, 1, 1.5}, WorkingPrecision -> 100]
    RealDigits[t]
  • PARI
    solve(x=1, 1.5, cos(x)*(1+x^2) - 1) \\ Michel Marcus, Feb 10 2015

A196817 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=2*cos(x).

Original entry on oeis.org

1, 4, 0, 1, 2, 6, 9, 2, 0, 7, 5, 9, 9, 9, 5, 7, 9, 4, 2, 9, 2, 7, 1, 8, 7, 2, 4, 3, 7, 9, 0, 8, 3, 4, 1, 9, 1, 5, 3, 0, 8, 8, 2, 8, 6, 5, 4, 5, 3, 3, 6, 0, 2, 6, 0, 3, 7, 9, 1, 7, 8, 2, 5, 0, 7, 8, 6, 3, 1, 6, 4, 0, 0, 0, 4, 3, 1, 7, 1, 7, 3, 3, 3, 7, 3, 4, 8, 3, 3, 1, 2, 5, 9, 5, 7, 5, 7, 7, 9, 3
Offset: 1

Views

Author

Clark Kimberling, Oct 06 2011

Keywords

Examples

			x=1.401269207599957942927187243790834191530882865453360260...
		

Crossrefs

Cf. A196914.

Programs

  • Mathematica
    Plot[{1/(1 + x^2), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2}]
    t = x /. FindRoot[1 == (1 + x^2) Cos[x], {x, 1, 1.5}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196816 *)
    t = x /. FindRoot[1 == 2 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]   (* A196817 *)
    t = x /. FindRoot[1 == 3 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]  (* A196818 *)
    t = x /. FindRoot[1 == 4 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]   (* A196819 *)
    t = x /. FindRoot[1 == 5 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]  (* A196820 *)
    t = x /. FindRoot[1 == 6 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]  (* A196821 *)

A196818 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=3*cos(x).

Original entry on oeis.org

1, 4, 6, 4, 6, 1, 1, 4, 7, 9, 7, 0, 1, 4, 2, 5, 0, 0, 5, 0, 1, 4, 6, 4, 8, 0, 4, 8, 0, 1, 0, 0, 2, 5, 9, 9, 7, 8, 1, 8, 0, 8, 4, 8, 1, 3, 1, 0, 9, 6, 2, 6, 9, 6, 0, 3, 7, 9, 0, 7, 1, 1, 0, 1, 7, 5, 5, 7, 2, 5, 3, 9, 2, 4, 2, 6, 1, 6, 4, 8, 4, 7, 8, 7, 8, 4, 3, 0, 1, 6, 9, 7, 9, 9, 2, 0, 1, 0, 2, 6, 8, 5
Offset: 1

Views

Author

Clark Kimberling, Oct 06 2011

Keywords

Examples

			1.46461147970142500501464804801002599781808481310...
		

Crossrefs

Cf. A196914.

Programs

  • Mathematica
    Plot[{1/(1 + x^2), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2}]
    t = x /. FindRoot[1 == (1 + x^2) Cos[x], {x, 1, 1.5}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196816 *)
    t = x /. FindRoot[1 == 2 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]   (* A196817 *)
    t = x /. FindRoot[1 == 3 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]  (* A196818 *)
    t = x /. FindRoot[1 == 4 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]   (* A196819 *)
    t = x /. FindRoot[1 == 5 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]  (* A196820 *)
    t = x /. FindRoot[1 == 6 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]  (* A196821 *)

A196820 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=5*cos(x).

Original entry on oeis.org

1, 5, 0, 9, 7, 7, 1, 9, 0, 0, 4, 7, 0, 7, 2, 6, 8, 8, 5, 3, 5, 5, 4, 9, 3, 7, 5, 3, 5, 0, 0, 9, 8, 6, 5, 9, 9, 4, 4, 8, 6, 3, 7, 7, 2, 7, 5, 6, 3, 8, 3, 7, 3, 0, 5, 0, 6, 6, 8, 0, 5, 9, 3, 4, 3, 1, 5, 3, 7, 5, 3, 9, 5, 9, 0, 0, 9, 7, 0, 3, 7, 1, 1, 0, 9, 2, 9, 0, 8, 1, 2, 9, 7, 3, 8, 7, 9, 0, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Oct 06 2011

Keywords

Examples

			1.50977190047072688535549375350098659944863772756...
		

Crossrefs

Cf. A196914.

Programs

  • Mathematica
    Plot[{1/(1 + x^2), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2}]
    t = x /. FindRoot[1 == (1 + x^2) Cos[x], {x, 1, 1.5}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196816 *)
    t = x /. FindRoot[1 == 2 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]   (* A196817 *)
    t = x /. FindRoot[1 == 3 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]  (* A196818 *)
    t = x /. FindRoot[1 == 4 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]   (* A196819 *)
    t = x /. FindRoot[1 == 5 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]  (* A196820 *)
    t = x /. FindRoot[1 == 6 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]  (* A196821 *)

A196821 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=6*cos(x).

Original entry on oeis.org

1, 5, 2, 0, 4, 4, 9, 4, 5, 0, 8, 3, 3, 8, 1, 6, 3, 6, 3, 1, 4, 7, 4, 5, 8, 8, 2, 0, 8, 9, 0, 5, 6, 3, 9, 6, 3, 1, 3, 8, 9, 8, 5, 3, 0, 5, 5, 8, 3, 2, 7, 8, 4, 3, 5, 1, 8, 1, 2, 8, 9, 3, 4, 0, 1, 3, 6, 8, 8, 1, 5, 5, 1, 6, 1, 1, 3, 2, 8, 2, 2, 3, 1, 6, 8, 8, 9, 2, 6, 3, 2, 4, 0, 2, 9, 2, 6, 1, 3, 9
Offset: 1

Views

Author

Clark Kimberling, Oct 06 2011

Keywords

Examples

			1.5204494508338163631474588208905639631389853055832784...
		

Crossrefs

Cf. A196914.

Programs

  • Mathematica
    Plot[{1/(1 + x^2), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2}]
    t = x /. FindRoot[1 == (1 + x^2) Cos[x], {x, 1, 1.5}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196816 *)
    t = x /. FindRoot[1 == 2 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]   (* A196817 *)
    t = x /. FindRoot[1 == 3 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]  (* A196818 *)
    t = x /. FindRoot[1 == 4 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]   (* A196819 *)
    t = x /. FindRoot[1 == 5 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]  (* A196820 *)
    t = x /. FindRoot[1 == 6 (1 + x^2) Cos[x], {x, 1, 1.6},
       WorkingPrecision -> 100]
    RealDigits[t]  (* A196821 *)
Showing 1-5 of 5 results.