cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197649 a(n) = Sum_{k=0..n} k*Fibonacci(2*k).

Original entry on oeis.org

0, 1, 7, 31, 115, 390, 1254, 3893, 11789, 35045, 102695, 297516, 853932, 2432041, 6881395, 19361995, 54214939, 151164018, 419910354, 1162585565, 3209268665, 8835468881, 24266461007, 66501634776, 181882282200, 496539007825, 1353272290399, 3682496714743
Offset: 0

Views

Author

Gary Detlefs, Oct 16 2011

Keywords

Comments

There are only a small number of Fibonacci identities that can be solved for n. Some of these are
1. n = (-F(4*n) + 5*Sum_{k=1..n} F(2*k-1)^2)/2 (Vajda #95).
2. n = (F(n+3) - 2 + Sum_{k=0..n} k*F(k))/F(n+2). (A104286)
3. n = (a(n) + F(2*n))/F(2*n+1).
4. n = F(n+4) - 3 - Sum_{k=0..1} (F(k+2) - 1). (A001924)
n can also be expressed in terms of phi = (1+sqrt(5))/2:
5. n = floor(n*phi^3) - floor(2*n*phi).
6. n = (floor(2*n*phi^2) - floor(2*n*phi))/2.

Crossrefs

Cf. A023619 (inverse binomial transform).

Programs

  • Maple
    a:=n->sum(k*fibonacci(2*k),n= 0..n):seq(a(n), n=0..25);
  • Mathematica
    Table[Sum[k*Fibonacci[2*k], {k, 0, n}], {n, 0, 50}] (* T. D. Noe, Oct 17 2011 *)

Formula

a(n) = n*F(2*n+1) - F(2*n), where F(n) = Fibonacci(n).
a(n) = ((F(2*n+1)*((n-1)*h(n-1) - (n-1)*h(n-2)) - h(n)*F(2*n))/h(n), n > 2, where h(n) is the n-th harmonic number.
From R. J. Mathar, Oct 17 2011: (Start)
G.f.: x*(1+x) / (x^2-3*x+1)^2.
a(n) = A001871(n-1) + A001871(n-2). (End)
a(n) ~ c*n*(3 + sqrt(5))^n*2^(-n), where c = (5 + sqrt(5))/10. - Stefano Spezia, Mar 29 2022
E.g.f.: 2*exp(3*x/2)*(5*x*cosh(sqrt(5)*x/2) + sqrt(5)*(2*x - 1)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Mar 04 2025

Extensions

Identity 4 added by Gary Detlefs, Dec 22 2012