cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A197986 a(n) = round((n+1/n)^3).

Original entry on oeis.org

8, 16, 37, 77, 141, 235, 364, 536, 756, 1030, 1364, 1764, 2236, 2786, 3420, 4144, 4964, 5886, 6916, 8060, 9324, 10714, 12236, 13896, 15700, 17654, 19764, 22036, 24476, 27090, 29884, 32864, 36036, 39406, 42980, 46764, 50764
Offset: 1

Views

Author

Vincenzo Librandi, Oct 21 2011

Keywords

Crossrefs

Programs

  • Magma
    [Round((n+1/n)^3): n in [1..60]]
    
  • Mathematica
    Table[Round[(n+1/n)^3],{n,40}] (* or *) Join[{8,16,37,77,141,235}, LinearRecurrence[ {4,-6,4,-1},{364,536,756,1030},40]] (* Harvey P. Dale, Apr 05 2012 *)
  • SageMath
    [8,16,37,77,141,235]+[n*(n^2+3) for n in range(7,51)] # G. C. Greubel, Feb 04 2024

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(1)= 8, a{2}=16, a(3)=37, a(4)=77, a(5)=141, a(6)=235, a(7)=364, a(8)=536, a(9)=756, a(10)=1030. - Harvey P. Dale, Apr 05 2012
From G. C. Greubel, Feb 04 2024: (Start)
a(n) = n*(n^2+3) for n > 6, with a(1)=8, a(2)=16, a(3)=37, a(4)=77, a(5)=141, a(6)=235.
G.f.: x*(8 - 16*x + 21*x^2 - 7*x^3 - x^4 + x^5 - x^6 + 3*x^7 - 3*x^8 + x^9)/(1-x)^4.
E.g.f.: 4*x + x^2 + x^3/3! + x^4/4! + x^5/5! + x^6/6! + x*(4 + 3*x + x^2)*exp(x). (End)
Showing 1-1 of 1 results.