cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198256 Row sums of A197653.

Original entry on oeis.org

1, 5, 46, 485, 5626, 69062, 882540, 11614437, 156343330, 2142556130, 29791689148, 419260001030, 5960334608788, 85469709312860, 1234797737654296, 17955907741675749, 262607675818816050, 3860239468267647914, 57002176852356800700, 845159480056345448610
Offset: 0

Views

Author

Susanne Wienand, Oct 22 2011

Keywords

Comments

Number of meanders of length (n+1)*4 which are composed by arcs of equal length and a central angle of 90 degrees.
Definition of a meander:
A binary curve C is a triple (m, S, dir) such that
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated a value of dir,
(c) consecutive Ls increment the index of dir,
(d) consecutive Rs decrement the index of dir,
(e) the integer m > 0 divides the length of S and
(f) C is a meander if each value of dir occurs length(S)/m times.
For this sequence, m = 4.
The terms are proved by brute force for 0 <= n <= 8, but not yet in general. - Susanne Wienand, Oct 29 2011

Examples

			Some examples of list S and allocated values of dir if n = 4:
Length(S) = (4+1)*4 = 20.
  S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L
dir: 1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0
  S: L,L,L,L,R,L,R,R,L,R,R,R,L,R,L,L,R,L,L,L
dir: 1,2,3,0,0,0,0,3,3,3,2,1,1,1,1,2,2,2,3,0
  S: L,L,R,L,L,L,L,R,R,L,R,R,L,R,L,L,L,L,R,R
dir: 1,2,2,2,3,0,1,1,0,0,0,3,3,3,3,0,1,2,2,1
Each value of dir occurs 20/4 = 5 times.
		

Crossrefs

Programs

  • Mathematica
    A198256[n_] := Sum[Sum[Sum[(-1)^(j + i)* Binomial[i, j]*Binomial[n, k]^4*(n + 1)^j*(k + 1)^(3 - j)/(k + 1)^3, {i, 0, 3}], {j, 0, 3}], {k, 0, n}]; Table[A198256[n], {n, 0, 16}] (* Peter Luschny, Nov 02 2011 *)
  • PARI
    A198256(n) = {sum(k=0,n,if(n == 1+2*k,4,(1+k)*(1-((n-k)/(1+k))^4)/(1+2*k-n))*binomial(n,k)^4)} \\ Peter Luschny, Nov 24 2011
  • Sage
    from mpmath import mp, hyper
    def A198256(n) : return hyper([1-n, 1-n, 1-n, 1-n], [3, 3, 3], 1)*(n^4-n^6)/4 + hyper([-n, -n, -n, -n], [2, 2, 2], 1)*(1+n+n^2+n^3) + hyper([2, 1-n, 1-n, 1-n, 1-n], [1, 3, 3, 3], 1)*(n^4+n^5)/4
    mp.dps = 32
    for n in (0..19) : print(int(A198256(n)))  # Peter Luschny, Oct 24 2011
    

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..3} Sum_{i=0..3} (-1)^(j+i)*C(i,j)*C(n,k)^4*(n+1)^j*(k+1)^(3-j)/(k+1)^3. - Peter Luschny, Nov 02 2011
a(n) = Sum_{k=0..n} h(n,k)*binomial(n,k)^4, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^4)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 4. - Peter Luschny, Nov 24 2011
From Peter Bala, Mar 21 2023: (Start)
Conjecture 1: a(n) = Sum_{k = 0..n} binomial(n+1,k)^2*binomial(n,k)^2.
If true, then we have the third-order recurrence equation
n^2*(n + 1)^3*P(n-1)*a(n) = 2*n^2*(400*n^8 - 1260*n^7 + 20*n^6 + 3020*n^5 - 1646*n^4 - 1951*n^3 + 1142*n^2 + 465*n - 290)*a(n-1) + 4*(n - 1)*(2800*n^9 - 15420*n^8 + 30620*n^7 - 23710*n^6 + 808*n^5 + 6863*n^4 - 1309*n^3 - 1218*n^2 + 496*n - 60)*a(n-2) + 8*(n - 2)^2*(2*n - 3)*(4*n - 5)*(4*n - 7)*P(n)*a(n-3) with a(0) = 1, a(1) = 5 and a(2) = 46 and where P(n) = 100*n^5 - 65*n^4 - 35*n^3 + 25*n^2 + 6*n - 5.
Conjecture 2: working with offset 1, that is, a(1) = 1, a(2) = 5, ..., then the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for positive integers n and r and all primes p >= 5. (End)
a(n) ~ 2^(4*n + 5/2) / (Pi*n)^(3/2). - Vaclav Kotesovec, Apr 17 2023
Peter Bala's conjecture 1 can equivalently written: a(n) = hypergeom([-n - 1, -n - 1, -n, -n], [1, 1, 1], 1). - Detlef Meya, May 28 2024
a(n) = Sum_{k=0..n+1} (k/(n+1))^2 * binomial(n+1,k)^4. - Seiichi Manyama, Jul 14 2024