A171884 Lexicographically earliest injective nonnegative sequence a(n) satisfying |a(n+1) - a(n)| = n for all n.
0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, 42, 63, 41, 64, 40, 65, 39, 66, 38, 67, 37, 68, 36, 69, 35, 70, 34, 71, 33, 72, 32, 73, 31, 74, 30, 75, 29, 76, 28, 77, 27, 78, 26, 79, 133, 188, 132, 189, 131, 190, 130, 191, 129, 192, 128, 193, 127, 194
Offset: 1
Keywords
Examples
We begin with 0, 0+1=1, 1+2=3. 3-3=0 cannot be the next term because 0 is already in the sequence so we go to 3+3=6. The next could be 6-4=2 or 6+4=10 but we choose 2 because it is smaller.
Links
- Jianing Song, Table of n, a(n) for n = 1..13122
- Robert Munafo, Lexicographically earliest injective and unbounded sequence A(n) satisfying |A(n+1)-A(n)|=n for all n
- Robert Munafo, main-A171884.c(C source code to generate the sequence)
Crossrefs
Programs
-
Mathematica
A171884[{}, , ] := {}; A171884[L_List, max_Integer, True] := If[Length[L] == max, L, With[{n = Length[L]}, If[Last[L] - n < 1 || MemberQ[L, Last[L] - n], If[MemberQ[L, Last[L] + n], A171884[Drop[L, -1], max, False], A171884[Append[L, Last[L] + n], max, True]], A171884[Append[L, Last[L] - n], max, True]]]] A171884[L_List, max_Integer, False] := With[{n = Length[L]}, If[MemberQ[L, Last[L] + n], A171884[Drop[L, -1], max, False], A171884[Append[L, Last[L] + n], max, True]]] A171884[{0}, 200, True] (* Paul Raff, Mar 15 2010 *)
-
PARI
A171884_upto(N,a=0,t=2)=vector(N,k, a+=if(!bitand(k,1), k-1, t-=1, 1-k, t=k-1)) \\ or: A171884_upto(N,a)=vector(N,k,a+=if(bitand(k,1)&&k\2!=3^valuation(k-(k>1),3),1-k,k-1)) \\ M. F. Hasler, Apr 05 2019 a(n) = if(n<=2, n-1, my(k=logint((n-1)\2, 3), r=n-2*3^k); if(r%2, 5*3^k-1-(r+1)/2, 7*3^k-2+r/2)) \\ Jianing Song, Oct 07 2022
Formula
a(n+1) = a(n) +- n with - iff n is even but not n = 2 + 2*3^k. (Cf. comment from May 09 2013.) - M. F. Hasler, Apr 05 2019
a(2*3^k + 2*r - 1) = 5*3^k - 1 - r, a(2*3^k + 2*r) = 7*3^k - 2 + r, for k >= 0 and 1 <= r <= 2*3^k. - Jianing Song, Oct 07 2022
Extensions
Definition edited by M. F. Hasler, Apr 01 2019
Comments