A198724 Let P(n) be the maximal prime divisor of 3*n+1. Then a(n) is the smallest number of iterations of P(n) such that the a(n)-th iteration < n, and a(n) = 0, if such number does not exist.
2, 3, 1, 6, 4, 1, 1, 6, 3, 2, 1, 2, 2, 1, 1, 1, 2, 3, 1, 3, 1, 2, 1, 2, 6, 1, 1, 1, 4, 3, 1, 2, 2, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 2, 3, 1, 1, 3, 1, 6, 1, 2, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 3
Keywords
Examples
For n=52 we have iterations: P^(1)=157, P^(2)=59, P^(3)=89, P^(4)=67, P^(5)=101, P^(6)=19<52. Thus a(52)=6.
Links
- V. Shevelev, Collatz-like problem with prime iterations
Programs
-
Mathematica
P[n_] := FactorInteger[3*n + 1][[-1, 1]]; Table[k = 1; m = n; While[m = P[m]; m >= n, k++]; k, {n, 3, 100}] (* T. D. Noe, Oct 30 2011 *)
-
PARI
a(n) = {nb = 1; na = n; while((nna=vecmax(factor(3*na+1)[,1])) >= n,na = nna; nb++); nb;} \\ Michel Marcus, Feb 06 2016
Comments