A198834 Number of sequences of n coin flips that win on the last flip, if the sequence of flips ends with (0,1,1) or (1,1,1).
0, 0, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338
Offset: 1
Examples
For n=6 the a(6)=6 solutions are (0,0,0,0,1,1), (1,0,0,0,1,1); (0,1,0,0,1,1), (1,1,0,0,1,1), (0,0,1,0,1,1), (1,0,1,0,1,1) all for Abel.
References
- A. Engel, Wahrscheinlichkeit und Statistik, Band 2, Klett, 1978, pages 25-26.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Maple
a(1):=0: a(2):=0: a(3):=2: ml:=0.75: pot:=8: for n from 4 to 100 do pot:=2*pot: a(n):=a(n-1)+a(n-2): ml:=ml+n*a(n)/pot: end do: printf("%12.8f",ml); seq(a(n),n=1..100);
-
Mathematica
Join[{0, 0}, Table[2*Fibonacci[n], {n, 70}]] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *) Join[{0},LinearRecurrence[{1,1},{0,2},50]] (* Vincenzo Librandi, Feb 19 2012 *)
Formula
a(n) = a(n-1) + a(n-2) for n > 3.
G.f.: 2*x^3/(1 - x - x^2).
a(n) = 2*A000045(n-2). - R. J. Mathar, Jan 11 2017
E.g.f.: 2 - 2*x + 2*exp(x/2)*(3*sqrt(5)*sinh(sqrt(5)*x/2) - 5*cosh(sqrt(5)*x/2))/5. - Stefano Spezia, Feb 19 2023
Comments