cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198834 Number of sequences of n coin flips that win on the last flip, if the sequence of flips ends with (0,1,1) or (1,1,1).

Original entry on oeis.org

0, 0, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338
Offset: 1

Views

Author

Paul Weisenhorn, Oct 30 2011

Keywords

Comments

If the sequence ends with (011) Abel wins; if it ends with (111) Kain wins.
Kain(n)=0 for n <> 3; Kain(3)=1.
Abel(n) = A128588(n-2) for n > 2.
a(n) = A006355(n-1) for n > 2.
Win probability for Abel: Sum_{n>=1} Abel(n)/2^n = 7/8.
Win probability for Kain: Kain(3)/8 = 1/8.
Mean length of the game: Sum_{n>=1} n*a(n)/2^n = 7.
Appears to be essentially the same as A163733, A118658, A055389. - R. J. Mathar, Oct 31 2011

Examples

			For n=6 the a(6)=6 solutions are (0,0,0,0,1,1), (1,0,0,0,1,1); (0,1,0,0,1,1), (1,1,0,0,1,1), (0,0,1,0,1,1), (1,0,1,0,1,1) all for Abel.
		

References

  • A. Engel, Wahrscheinlichkeit und Statistik, Band 2, Klett, 1978, pages 25-26.

Crossrefs

Programs

  • Maple
    a(1):=0: a(2):=0: a(3):=2:
    ml:=0.75: pot:=8:
    for n from 4 to 100 do
      pot:=2*pot:
      a(n):=a(n-1)+a(n-2):
      ml:=ml+n*a(n)/pot:
    end do:
    printf("%12.8f",ml);
    seq(a(n),n=1..100);
  • Mathematica
    Join[{0, 0}, Table[2*Fibonacci[n], {n, 70}]] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *)
    Join[{0},LinearRecurrence[{1,1},{0,2},50]] (* Vincenzo Librandi, Feb 19 2012 *)

Formula

a(n) = a(n-1) + a(n-2) for n > 3.
G.f.: 2*x^3/(1 - x - x^2).
a(n) = 2*A000045(n-2). - R. J. Mathar, Jan 11 2017
E.g.f.: 2 - 2*x + 2*exp(x/2)*(3*sqrt(5)*sinh(sqrt(5)*x/2) - 5*cosh(sqrt(5)*x/2))/5. - Stefano Spezia, Feb 19 2023