cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A245552 G.f.: Sum_{n>=0} (2*n+1)*x^(n^2+n+1).

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 0, 5, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2014

Keywords

Comments

Related to g.f. for A053187.
Apart from signs and a factor of 2, this is the classical Jacobi theta-function theta'_1(q), see A002483.

Crossrefs

Programs

Formula

a(2*n+1) = A198954(n), a(2*n) = 0.- Robert Israel, Aug 05 2014

A168038 Squares closest to 2*n.

Original entry on oeis.org

0, 1, 4, 4, 9, 9, 9, 16, 16, 16, 16, 25, 25, 25, 25, 25, 36, 36, 36, 36, 36, 36, 49, 49, 49, 49, 49, 49, 49, 64, 64, 64, 64, 64, 64, 64, 64, 81, 81, 81, 81, 81, 81, 81, 81, 81, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 121, 121, 121, 121, 121, 121, 121, 121, 121
Offset: 0

Views

Author

Zak Seidov, Nov 17 2009

Keywords

Crossrefs

Essentially partial sums of A198954.

Programs

  • Mathematica
    Round[Sqrt[2*Range[0,120]]]^2
  • Python
    from math import isqrt
    def A168038(n): return (isqrt(n<<3)+1>>1)**2 # Chai Wah Wu, Jun 19 2024

Formula

a(n) = A002024(n)^2. - Chai Wah Wu, Jun 19 2024

A107270 Multiples of coefficients in asymptotic expansion of the rotational partition function for a heteronuclear diatomic molecule.

Original entry on oeis.org

1, 1, 2, 8, 72, 1440, 55008, 3507840, 342679680, 48401625600, 9472057781760, 2484361405532160, 850218223244544000, 371335242657899520000, 203148791342840318976000, 137006974339300359770112000
Offset: 0

Views

Author

Michael Somos, May 15 2005

Keywords

Examples

			1 + 3*exp(-2*x) + 5*exp(-6*x) + 7*exp(-10*x) + ... ~ 1/x + 1/3 + (1/15)*x + (4/315)*x^2 + ...
		

References

  • G. Herzberg, Molecular Spectra and Molecular Structure II: Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand, 1945. see page 505
  • D. A. McQuarrie, Statistical Mechanics, University Science Books, 2000, see page 100 equ. (6-35)
  • G. H. Wannier, Statistical Physics, Dover Publications, 1987. see page 216 equ. (11.21)

Crossrefs

Cf. A198954.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, Sum[ BernoulliB[n + j] / (j! (n - j)!), {j, 0, n }] (2 n + 1)! / (-2)^n]; (* Michael Somos, Dec 04 2013 *)
  • PARI
    {a(n) = if( n<0, 0, sum( j=0, n, bernfrac(n+j) / ((n-j)! * j!)) * (2*n + 1)! / (-2)^n)};

Formula

Sum_{k>=0} (2*k + 1) * exp(-x*(k^2 + k)) ~ (1/x) * Sum_{k>=0} a(k) * (2*x)^k / (2*k + 1)!.
a(n) ~ 2^(n + 7/2) * n^(3*n + 3/2) / (exp(3*n) * Pi^(2*n - 1/2)). - Vaclav Kotesovec, Jun 08 2019
Showing 1-3 of 3 results.