cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016051 Numbers of the form 9*k+3 or 9*k+6.

Original entry on oeis.org

3, 6, 12, 15, 21, 24, 30, 33, 39, 42, 48, 51, 57, 60, 66, 69, 75, 78, 84, 87, 93, 96, 102, 105, 111, 114, 120, 123, 129, 132, 138, 141, 147, 150, 156, 159, 165, 168, 174, 177, 183, 186, 192, 195, 201, 204, 210, 213, 219, 222, 228, 231, 237, 240
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A145204. - Reinhard Zumkeller, Oct 04 2008

Programs

  • Mathematica
    Select[Range[240], MatchQ[Mod[#, 9], 3|6]&] (* Jean-François Alcover, Sep 17 2013 *)
    LinearRecurrence[{1,1,-1},{3,6,12},60] (* or *) #+{3,6}&/@(9*Range[0,30])//Flatten (* Harvey P. Dale, Oct 04 2021 *)

Formula

a(n) = 3*A001651(n).
a(n+1) = a(n) + its digital root in decimal base.
From R. J. Mathar, Dec 16 2009: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) = 9*n/2 - 9/4 - 3*(-1)^n/4.
G.f: 3*x*(1+x+x^2)/((1+x)*(x-1)^2). (End)
a(n) = 9*(n-1) - a(n-1) (with a(1)=3). - Vincenzo Librandi, Nov 19 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(9*sqrt(3)). - Amiram Eldar, Sep 26 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = (2/sqrt(3)) * cos(Pi/18) (A199589).
Product_{n>=1} (1 + (-1)^n/a(n)) = (2/sqrt(3)) * sin(2*Pi/9). (End)

A199590 Decimal expansion (unsigned) of the greatest root of 6x^3 + 18x^2 + 12x + 2 = 0.

Original entry on oeis.org

2, 5, 7, 7, 7, 2, 8, 0, 1, 0, 3, 1, 4, 4, 0, 8, 4, 4, 7, 2, 9, 4, 4, 9, 3, 9, 7, 2, 7, 0, 6, 3, 5, 8, 2, 2, 7, 0, 8, 9, 4, 4, 1, 2, 5, 7, 0, 0, 9, 7, 7, 3, 1, 9, 7, 8, 2, 3, 1, 4, 6, 3, 9, 3, 9, 5, 8, 0, 8, 6, 4, 4, 5, 7, 6, 7, 3, 0, 5, 3, 7, 0, 8, 5, 8, 2, 4, 9, 9, 8, 0, 0, 3, 1, 0, 1, 5, 7, 2, 3
Offset: 0

Views

Author

Frank M Jackson, Nov 08 2011

Keywords

Comments

If the side lengths of a quadrilateral form a harmonic progression in the ratio 1 : 1/(1+d) : 1/(1+2d) : 1/(1+3d) where d is the common difference between the denominators of the harmonic progression, then the triangle inequality condition requires that d be in the range f < d < g, where f = -0.257772801... and is the greatest root of the equation: 2 + 12d + 18d^2 + 6d^3 = 0. The value of g is given in A199589.

Examples

			-0.257772801031440844729449397270635822708944125700977319782314639395808...
		

Crossrefs

Programs

Formula

sqrt(4/3)*sin(Pi*2/9) - 1. - Charles R Greathouse IV, Nov 10 2011

Extensions

a(99) corrected by Sean A. Irvine, Jul 25 2021

A199861 The decimal expansion (unsigned) of the value of d that maximizes the Brahmagupta expression given below.

Original entry on oeis.org

2, 2, 7, 1, 0, 6, 4, 4, 8, 2, 9, 4, 3, 8, 1, 2, 0, 3, 0, 1, 1, 1, 4, 3, 3, 5, 2, 5, 3, 2, 3, 4, 4, 6, 1, 8, 3, 7, 7, 5, 4, 0, 5, 3, 1, 2, 9, 8, 6, 7, 4, 9, 6, 2, 9, 3, 2, 5, 4, 0, 3, 5, 4, 5, 5, 0, 4, 8, 1, 2, 6, 1, 0, 0, 0, 1, 6, 0, 1, 8, 4, 3, 7, 1, 1, 6, 7, 7, 4, 5, 2, 8, 4, 9, 4, 9, 4, 5, 8, 6, 3, 5, 8
Offset: 0

Views

Author

Frank M Jackson, Nov 11 2011

Keywords

Comments

Brahmagupta expression sqrt((-1+1/(1+d)+1/(1+2d)+1/(1+3d)) * (1-1/(1+d)+1/(1+2d)+1/(1+3d)) * (1+1/(1+d)-1/(1+2d)+1/(1+3d)) * (1+1/(1+d)+1/(1+2d)-1/(1+3d)))/4 for d in the interval [-1/3, inf] where 1/(1+d), 1/(1+2d) and 1/(1+3d) are always positive.
The area of a convex quadrilateral with fixed sides is maximal when it is organized as a convex cyclic quadrilateral. Furthermore in order that a quadrilateral can have sides in a harmonic progression 1 : 1/(1+d) : 1/(1+2d) : 1/(1+3d) its denominator's common difference d is limited to the range f < d < g where f is the constant A199590 and g is the constant A199589. Consequently when d=-0.2271064482... it maximizes Brahmagupta's expression for the area of a convex cyclic quadrilateral whose sides form a harmonic progression.

Examples

			-0.22710644829438120301114335253234461837754...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[d/.NMaximize[{Sqrt[(-1+1/(1+d)+1/(1+2d)+1/(1+3d))(1-1/(1+d)+1/(1+2d)+1/(1+3d))(1+1/(1+d)-1/(1+2d)+1/(1+3d))(1+1/(1+d)+1/(1+2d)-1/(1+3d))]/4, -1/4120, PrecisionGoal->100, WorkingPrecision->240][[2]]][[1]]
  • PARI
    real(polroots(1323*d^12 + 9711*d^11 + 32535*d^10 + 67005*d^9 + 94338*d^8 + 94761*d^7 + 68955*d^6 + 36367*d^5 + 13740*d^4 + 3619*d^3 + 630*d^2 + 65*d + 3)[4]) \\ Charles R Greathouse IV, Nov 11 2011
    
  • PARI
    polrootsreal(1323*x^12 - 9711*x^11 + 32535*x^10 - 67005*x^9 + 94338*x^8 - 94761*x^7 + 68955*x^6 - 36367*x^5 + 13740*x^4 - 3619*x^3 + 630*x^2 - 65*x + 3)[1] \\ Charles R Greathouse IV, Oct 27 2023

Formula

d is the largest real root of the equation 1323d^12 + 9711d^11 + 32535d^10 + 67005d^9 + 94338d^8 + 94761d^7 + 68955d^6 + 36367d^5 + 13740d^4 + 3619d^3 + 630d^2 + 65d + 3 = 0.
Showing 1-3 of 3 results.