cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A199690 a(n) = (11*10^n + 1)/3.

Original entry on oeis.org

4, 37, 367, 3667, 36667, 366667, 3666667, 36666667, 366666667, 3666666667, 36666666667, 366666666667, 3666666666667, 36666666666667, 366666666666667, 3666666666666667, 36666666666666667, 366666666666666667, 3666666666666666667, 36666666666666666667, 366666666666666666667
Offset: 0

Views

Author

Vincenzo Librandi, Nov 09 2011

Keywords

Crossrefs

Cf. A199691.

Programs

  • Magma
    [(11*10^n+1)/3: n in [0..30]];
  • Mathematica
    (11*10^Range[0,20]+1)/3 (* or *) LinearRecurrence[{11,-10},{4,37},20] (* Harvey P. Dale, Mar 10 2019 *)

Formula

a(n) = 10*a(n-1) - 3.
a(n) = 11*a(n-1) - 10*a(n-2).
G.f.: (4-7*x)/((1-x)*(1-10*x)).
From Elmo R. Oliveira, Jun 10 2025: (Start)
E.g.f.: exp(x)*(1 + 11*exp(9*x))/3.
a(n) = A199691(n)/3. (End)

A379243 a(n) = (10^(n + 1) + 10^(n - min{v_2(n), v_5(n)}) + 1)^n, where v_p(n) indicates the p-adic valuation of n.

Original entry on oeis.org

111, 1212201, 1331363033001, 146415324072600440001, 1610517320513310012100005500001, 1771561966306219615026620001815000066000001, 194871722400927338207105124350046585000254100000770000001, 2143588825589736849603708090188560102487000074536000033880000008800000001
Offset: 1

Views

Author

Marco Ripà, Dec 18 2024

Keywords

Comments

For any n, a(n) == 1 (mod 10^n), while it is not congruent to 1 modulo 10^(n + 1).
If n is not a multiple of 10, 10^(n + 1) + 10^(n - min{v_2(n), v_5(n)}) + 1 has a total of n + 2 digits and they are n - 1 0s and 3 1s. Conversely, if there is a pair of positive integers (m, k) not ending with 0 and such that n := m*10^k, then 10^(n + 1) + 10^(n - min{v_2(n), v_5(n)}) + 1 has n - k + 2 digits (three 1s and the rest are all 0s) and a(n) = (10^(n + 1) + 10^(n - k) + 1)^n.
Since a(n) == 1 (mod 5) for any n, the constant congruence speed of a(n) (i.e., V(a(n))) is guaranteed to be constant starting from height v_5(a(n) - 1) + 2 (for this sufficient condition, see “Number of stable digits of any integer tetration” in Links).
Then, for any positive integer n, a(n) is (exactly) a n-th perfect power (since, for any given n, 10^(n + 1) + 10^(n - min{v_2(n), v_5(n)}) + 1 is divisible by 3 only once) and is also characterized by a constant congruence speed of n (for a strict proof of the general formula V((10^(t + k) + 10^(t - min{v_2(n), v_5(n)}) + 1)^n) = t, holding for any chosen positive integer k as long as t is an integer above min{v_2(n), v_5(n)} + 1, see Section 3 of “On the relation between perfect powers and tetration frozen digits” in Links).

Examples

			a(3) = (10^4 + 10^3 + 1)^3 = 11001^3  = 1331363033001 is a perfect cube whose constant congruence speed is 3.
		

Crossrefs

Programs

  • Mathematica
    pAdicValuation[n_, p_] := Module[{v = 0, k = n}, While[Mod[k, p] == 0 && k > 0,k = k/p;v++;];v];
    a[n_] := Module[{v2, v5, minVal}, v2 = pAdicValuation[n, 2]; v5 = pAdicValuation[n, 5];
    minVal = Min[v2, v5];(10^(n + 1) + 10^(n - minVal) + 1)^n]; sequence = Table[a[n], {n, 1, 20}]; sequence

Formula

If n <> 0 (mod 10), then a(n) = (11...[n - 1 trailing 0s]...1)^n.
Showing 1-2 of 2 results.