cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381460 Smallest n-th perfect power greater than 1 satisfying A373387(a(n)) = n.

Original entry on oeis.org

2, 49, 15625, 625, 7737809375, 735091890625, 1253790880222890625, 6634204312890625, 47312447868976594992787109375, 72624607478879073313928212890625, 471781339858152691906169456697218212890625, 1344888824246298437178134918212890625
Offset: 1

Views

Author

Marco Ripà, Feb 24 2025

Keywords

Comments

This sequence has infinitely many terms since a (trivial) upper bound for a(n) is given by (10^(n - v_{10}(n)) + 1)^n, where v_{10} corresponds to the number of trailing 0's of n (if any), and each of these terms is mandatorily a perfect power of degree n or a multiple of n (e.g., a(3) = 25^3 = 5^6).
All the a(n) are generated by the 13 nontrivial 10-adic solutions of the fundamental equation y^5 = y: ...480163574218751 (see A063006), ...263499879186432 (see A120817), ...996418333704193 (see A290375), ...476581907922943 (see A290373), ...259918212890624 (see A091664), ...259918212890625 (see A018247), ...740081787109375 (see A091663), ...740081787109376 (see A018248), ...003581666295807 (see A290372), ...523418092077057 (see A290374), ...736500120813568 (see A120818), ...519836425781249 (see A091661), and ...999999999999999.
The bases of a(11), a(12), ..., a(50) have been provided by Max Alekseyev on February 14, 2025 (see "Closed form for the general term of 2, 49, 15625, 625, ..." in Links).
It is conjectured that if n > 2 is given, then a(n) is generated by {5^2^k}_oo or -{5^2^k}_oo (this probabilistic argument is based on the study of a(n) up to n = 50 since a(50) is a 762 digit number generated by {5^2^k}_oo = ...6259918212890625).

Examples

			a(3) = 15625 since 15625 = 25^3 and 15625 is the smallest perfect cube whose constant congruence speed equals 3.
		

Crossrefs

A381015 a(n) = n + (number of trailing 0's of n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Marco Ripà, Feb 11 2025

Keywords

Comments

Constant congruence speed of (10^n + 1)^n, i.e., a(n) = A373387((10^n + 1)^n).
Since 10^n + 1 is never a perfect power by Catalan's conjecture (Mihăilescu's theorem), it follows that if 10 does not divide n, then (10^n + 1)^n is exactly an n-th perfect power with a constant congruence speed of a(n) = n.
Moreover, for any positive integer n, the congruence speed of (10^n + 1)^n equals 2*a(n) at height 1 and then becomes stable at height 2.

Examples

			a(10) = 11 since A373387((10^10 + 1)^10) = 11.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=n+IntegerExponent[n,10]; Array[a,77] (* Stefano Spezia, Feb 13 2025 *)
  • PARI
    a(n) = n + valuation(n, 10); \\ Michel Marcus, Feb 13 2025

Formula

a(n) = n + A122840(n).
a(n) = A373387(A121520(n)).
Showing 1-2 of 2 results.