cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199919 Number of distinct sums of distinct divisors of n when positive and negative divisors are allowed.

Original entry on oeis.org

3, 7, 9, 15, 9, 25, 9, 31, 27, 37, 9, 57, 9, 49, 49, 63, 9, 79, 9, 85, 65, 49, 9, 121, 27, 49, 81, 113, 9, 145, 9, 127, 81, 49, 69, 183, 9, 49, 81, 181, 9, 193, 9, 169, 157, 49, 9, 249, 27, 187, 81, 197, 9, 241, 69, 241, 81, 49, 9, 337, 9, 49, 209, 255, 81, 289
Offset: 1

Views

Author

Michel Marcus, Dec 22 2012

Keywords

Examples

			a(2)=7 because the signed divisors of 2 are -2, -1, 1 and 2 and their all possible sums are -1, -2, -3, 0, 1, 2, 3.
a(3)=9 because the signed divisors of 3 are -3, -1, 1 and 3 and their all possible sums are -1, -2, -3, -4, 0, 1, 2, 3, 4.
		

Crossrefs

Programs

  • Mathematica
    dsdd[n_]:=Module[{divs=Divisors[n]},Length[Union[Total/@Subsets[ Join[ divs,-divs],2Length[divs]]]]]; Array[dsdd,70] (* Harvey P. Dale, Jan 19 2015 *)
  • PARI
    A199919(n) = { my(ds=concat(apply(x -> -x,divisors(n)),divisors(n)),m=Map(),s,u=0); for(i=0,(2^#ds)-1,s = sumbybits(ds,i); if(!mapisdefined(m,s), mapput(m,s,s); u++)); (u); }; \\ Slow!
    sumbybits(v,b) = { my(s=0,i=1); while(b>0,s += (b%2)*v[i]; i++; b >>= 1); (s); }; \\ Antti Karttunen, May 19 2021
    
  • PARI
    See PARI-link \\ David A. Corneth, May 20 2021

Formula

a(A005153(n)) = 2*sigma(A005153(n)) + 1. - David A. Corneth, May 19 2021
a(p) = 9 for odd primes p. - Antti Karttunen, May 19 2021