A199949 Decimal expansion of least x satisfying x^2 + cos(x) = 2*sin(x).
6, 5, 9, 2, 6, 6, 0, 4, 5, 7, 6, 6, 9, 4, 6, 0, 7, 4, 5, 3, 7, 3, 4, 8, 5, 7, 9, 5, 6, 3, 0, 6, 7, 6, 1, 1, 6, 1, 5, 3, 2, 8, 0, 2, 1, 6, 4, 4, 5, 1, 6, 7, 9, 7, 3, 6, 0, 9, 4, 5, 1, 3, 0, 3, 1, 4, 1, 0, 7, 3, 6, 4, 4, 5, 5, 8, 7, 4, 2, 6, 6, 2, 4, 4, 0, 7, 1, 9, 5, 1, 9, 3, 1, 6, 4, 1, 4, 4, 7
Offset: 0
Examples
least x: 0.659266045766946074537348579563067611... greatest x: 1.2710268008159460640047188480978502...
Links
Crossrefs
Cf. A199950.
Programs
-
Mathematica
(* Program 1: A199949 *) a = 1; b = 1; c = 2; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .65, .66}, WorkingPrecision -> 110] RealDigits[r] (* A199949 *) r = x /. FindRoot[f[x] == g[x], {x, 1.27, 1.28}, WorkingPrecision -> 110] RealDigits[r] (* A199950 *) (* Program 2: implicit surface of x^2+u*cos(x)=v*sin(x) *) f[{x_, u_, v_}] := x^2 + u*Cos[x] - v*Sin[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, -5, 0}, {v, 0, 1}]; ListPlot3D[Flatten[t, 1]] (* for A199949 *)
-
PARI
a=1; b=1; c=2; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018
Extensions
A-number corrected by Jaroslav Krizek, Nov 27 2011
Comments