cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 136 results. Next

A200338 Decimal expansion of least x > 0 satisfying x^2 + 1 = tan(x).

Original entry on oeis.org

1, 1, 7, 2, 0, 9, 3, 6, 1, 7, 2, 8, 5, 6, 6, 9, 0, 3, 9, 6, 8, 7, 8, 1, 8, 7, 9, 5, 8, 1, 0, 8, 9, 8, 8, 0, 4, 0, 2, 4, 2, 4, 5, 7, 0, 8, 8, 0, 2, 7, 6, 3, 7, 1, 7, 6, 0, 1, 8, 6, 6, 3, 6, 7, 1, 2, 1, 8, 6, 6, 3, 4, 6, 0, 7, 6, 4, 1, 2, 2, 8, 3, 6, 5, 4, 5, 6, 1, 1, 2, 2, 8, 6, 7, 2, 3, 0, 3, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 16 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x satisfying a*x^2 + b*x + c = tan(x) and 0 < x < Pi/2.
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 0.... 1.... A200338
1.... 0.... 2.... A200339
1.... 0.... 3.... A200340
1.... 0.... 4.... A200341
1.... 1.... 1.... A200342
1.... 1.... 2.... A200343
1.... 1.... 3.... A200344
1.... 1.... 4.... A200345
1.... 2.... 1.... A200346
1.... 2.... 2.... A200347
1.... 2.... 3.... A200348
1.... 2.... 4.... A200349
1.... 3.... 1.... A200350
1.... 3.... 2.... A200351
1.... 3.... 3.... A200352
1.... 3.... 4.... A200353
1.... 4.... 1.... A200354
1.... 4.... 2.... A200355
1.... 4.... 3.... A200356
1.... 4.... 4.... A200357
2.... 0.... 1.... A200358
2.... 0.... 3.... A200359
2.... 1.... 1.... A200360
2.... 1.... 2.... A200361
2.... 1.... 3.... A200362
2.... 1.... 4.... A200363
2.... 2.... 1.... A200364
2.... 2.... 3.... A200365
2.... 3.... 1.... A200366
2.... 3.... 2.... A200367
2.... 3.... 3.... A200368
2.... 3.... 4.... A200369
2.... 4.... 1.... A200382
2.... 4.... 3.... A200383
3.... 0.... 1.... A200384
3.... 0.... 2.... A200385
3.... 0.... 4.... A200386
3.... 1.... 1.... A200387
3.... 1.... 2.... A200388
3.... 1.... 3.... A200389
3.... 1.... 4.... A200390
3.... 2.... 1.... A200391
3.... 2.... 2.... A200392
3.... 2.... 3.... A200393
3.... 2.... 4.... A200394
3.... 3.... 1.... A200395
3.... 3.... 2.... A200396
3.... 3.... 4.... A200397
3.... 4.... 1.... A200398
3.... 4.... 2.... A200399
3.... 4.... 3.... A200400
3.... 4.... 4.... A200401
4.... 0.... 1.... A200410
4.... 0.... 3.... A200411
4.... 1.... 1.... A200412
4.... 1.... 2.... A200413
4.... 1.... 3.... A200414
4.... 1.... 4.... A200415
4.... 2.... 1.... A200416
4.... 2.... 3.... A200417
4.... 3.... 1.... A200418
4.... 3.... 2.... A200419
4.... 3.... 3.... A200420
4.... 3.... 4.... A200421
4.... 4.... 1.... A200422
4.... 4.... 3.... A200423
1... -1.... 1.... A200477
1... -1.... 2.... A200478
1... -1.... 3.... A200479
1... -1.... 4.... A200480
1... -2.... 1.... A200481
1... -2.... 2.... A200482
1... -2.... 3.... A200483
1... -2.... 4.... A200484
1... -3.... 1.... A200485
1... -3.... 2.... A200486
1... -3.... 3.... A200487
1... -3.... 4.... A200488
1... -4.... 1.... A200489
1... -4.... 2.... A200490
1... -4.... 3.... A200491
1... -4.... 4.... A200492
2... -1.... 1.... A200493
2... -1.... 2.... A200494
2... -1.... 3.... A200495
2... -1.... 4.... A200496
2... -2.... 1.... A200497
2... -2.... 3.... A200498
2... -3.... 1.... A200499
2... -3.... 2.... A200500
2... -3.... 3.... A200501
2... -3.... 4.... A200502
2... -4.... 1.... A200584
2... -4.... 3.... A200585
2... -1.... 2.... A200586
2... -1.... 3.... A200587
2... -1.... 4.... A200588
3... -2.... 1.... A200589
3... -2.... 2.... A200590
3... -2.... 3.... A200591
3... -2.... 4.... A200592
3... -3.... 1.... A200593
3... -3.... 2.... A200594
3... -3.... 4.... A200595
3... -4.... 1.... A200596
3... -4.... 2.... A200597
3... -4.... 3.... A200598
3... -4.... 4.... A200599
4... -1.... 1.... A200600
4... -1.... 2.... A200601
4... -1.... 3.... A200602
4... -1.... 4.... A200603
4... -2.... 1.... A200604
4... -2.... 3.... A200605
4... -3.... 1.... A200606
4... -3.... 2.... A200607
4... -3.... 3.... A200608
4... -3.... 4.... A200609
4... -4.... 1.... A200610
4... -4.... 3.... A200611
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A200338, take f(x,u,v) = x^2 + u*x + v - tan(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			x=1.17209361728566903968781879581089880...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A200338 *)
    a = 1; b = 0; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200338 *)
    (* Program 2: implicit surface of x^2+u*x+v=tan(x) *)
    f[{x_, u_, v_}] := x^2 + u*x + v - Tan[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1.57}]}, {u, 0, 5, .1}, {v, 0, 5, .1}];
    ListPlot3D[Flatten[t, 1]]  (* for A200388 *)
  • PARI
    solve(x=1,1.2,x^2+1-tan(x)) \\ Charles R Greathouse IV, Mar 23 2022

A200297 Decimal expansion of least x satisfying 4*x^2-3*cos(x)=2*sin(x).

Original entry on oeis.org

5, 8, 8, 4, 7, 0, 8, 6, 9, 2, 8, 6, 8, 5, 2, 6, 1, 6, 4, 9, 9, 7, 9, 8, 6, 4, 8, 5, 6, 0, 3, 6, 6, 1, 8, 8, 2, 9, 8, 3, 2, 9, 5, 4, 3, 1, 0, 7, 1, 1, 9, 3, 6, 5, 0, 0, 9, 1, 7, 5, 7, 7, 4, 4, 8, 9, 7, 9, 1, 0, 8, 7, 6, 1, 0, 5, 0, 6, 5, 4, 1, 1, 8, 9, 1, 8, 1, 9, 7, 5, 0, 0, 7, 4, 4, 7, 5, 3, 6
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.58847086928685261649979864856036...
greatest x: 0.922697336548314794603906551791...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 4; b = -3; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.59, -.58}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200297 *)
    r = x /. FindRoot[f[x] == g[x], {x, .92, .93}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200298 *)
  • PARI
    a=4; b=-3; c=2; solve(x=-.59, -.58, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A200298 Decimal expansion of greatest x satisfying 4*x^2-3*cos(x)=2*sin(x).

Original entry on oeis.org

9, 2, 2, 6, 9, 7, 3, 3, 6, 5, 4, 8, 3, 1, 4, 7, 9, 4, 6, 0, 3, 9, 0, 6, 5, 5, 1, 7, 9, 1, 5, 6, 2, 3, 6, 8, 8, 9, 4, 9, 0, 9, 0, 4, 9, 0, 7, 7, 2, 5, 7, 0, 5, 8, 6, 7, 3, 2, 2, 9, 0, 3, 3, 1, 1, 2, 1, 4, 2, 4, 9, 0, 9, 0, 3, 3, 9, 7, 3, 4, 8, 4, 2, 3, 0, 2, 3, 5, 1, 4, 5, 3, 8, 5, 5, 6, 8, 7, 4
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.58847086928685261649979864856036...
greatest x: 0.922697336548314794603906551791...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 4; b = -3; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.59, -.58}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200297 *)
    r = x /. FindRoot[f[x] == g[x], {x, .92, .93}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200298 *)
  • PARI
    a=4; b=-3; c=2; solve(x=.92, .93, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A200111 Decimal expansion of least x satisfying 2*x^2-cos(x)=3*sin(x).

Original entry on oeis.org

2, 7, 4, 1, 8, 5, 9, 2, 8, 0, 5, 9, 8, 3, 1, 5, 7, 9, 0, 1, 2, 9, 3, 8, 5, 7, 6, 1, 6, 5, 9, 2, 6, 1, 0, 6, 7, 1, 9, 3, 4, 6, 4, 4, 2, 6, 5, 9, 6, 6, 3, 7, 1, 8, 4, 8, 3, 7, 3, 1, 3, 2, 8, 7, 6, 3, 4, 5, 8, 4, 4, 1, 6, 6, 5, 1, 5, 9, 0, 3, 6, 8, 1, 0, 1, 8, 6, 6, 3, 2, 2, 3, 7, 2, 6, 9, 8, 8, 1
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.2741859280598315790129385761659261067...
greatest x: 1.25741142949475925602237309814803895...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 2; b = -1; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.28, -.27}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200111 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200112 *)
  • PARI
    a=2; b=-1; c=3; solve(x=-.28, -.27, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A200231 Decimal expansion of least x satisfying 3*x^2-2*cos(x)=2*sin(x).

Original entry on oeis.org

5, 0, 8, 0, 6, 6, 6, 8, 3, 7, 0, 1, 8, 6, 8, 1, 3, 4, 6, 5, 3, 0, 5, 9, 4, 8, 4, 2, 0, 3, 5, 0, 9, 8, 2, 1, 8, 9, 4, 8, 2, 6, 2, 6, 7, 3, 3, 4, 2, 3, 8, 3, 3, 0, 9, 1, 6, 6, 9, 1, 7, 6, 3, 5, 0, 8, 2, 6, 5, 1, 1, 8, 0, 2, 3, 3, 0, 6, 1, 7, 3, 4, 6, 3, 9, 0, 2, 2, 0, 8, 5, 4, 5, 9, 6, 4, 8, 7, 0
Offset: 0

Views

Author

Clark Kimberling, Nov 14 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.508066683701868134653059484203509821...
greatest x: 0.9632913766196791046556418296641642...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 3; b = -2; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.51, -.50}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200231 *)
    r = x /. FindRoot[f[x] == g[x], {x, .96, .97}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200232 *)
  • PARI
    a=3; b=-2; c=2; solve(x=-.51, -.50, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A199951 Decimal expansion of least x satisfying x^2 + cos(x) = 3*sin(x).

Original entry on oeis.org

3, 6, 3, 5, 6, 0, 5, 3, 9, 8, 5, 8, 9, 5, 9, 2, 6, 6, 2, 5, 7, 3, 2, 1, 4, 8, 3, 7, 2, 2, 8, 4, 3, 9, 8, 5, 6, 6, 8, 9, 5, 7, 9, 0, 7, 4, 2, 5, 0, 8, 4, 0, 8, 0, 7, 4, 4, 2, 0, 4, 5, 7, 1, 8, 4, 0, 3, 1, 3, 4, 0, 6, 6, 8, 8, 6, 2, 2, 7, 6, 2, 6, 7, 4, 1, 8, 8, 9, 9, 6, 0, 8, 8, 5, 1, 2, 9, 2, 5
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  0.36356053985895926625732148372284398566895...
greatest x: 1.771792952982026337265923586449094216220...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 1; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .36, .37}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199951 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.77, 1.78}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199952 *)
  • PARI
    a=1; b=1; c=3; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A199952 Decimal expansion of greatest x satisfying x^2 + cos(x) = 3*sin(x).

Original entry on oeis.org

1, 7, 7, 1, 7, 9, 2, 9, 5, 2, 9, 8, 2, 0, 2, 6, 3, 3, 7, 2, 6, 5, 9, 2, 3, 5, 8, 6, 4, 4, 9, 0, 9, 4, 2, 1, 6, 2, 2, 0, 1, 5, 8, 2, 4, 5, 5, 1, 8, 6, 3, 0, 8, 9, 1, 8, 9, 2, 1, 1, 4, 7, 0, 0, 9, 3, 4, 5, 2, 5, 6, 5, 1, 6, 7, 0, 3, 5, 0, 8, 1, 3, 9, 7, 8, 1, 6, 1, 4, 4, 3, 8, 7, 0, 4, 5, 5, 8, 7
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  0.36356053985895926625732148372284398566895...
greatest x: 1.771792952982026337265923586449094216220...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 1; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .36, .37}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199951 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.77, 1.78}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199952 *)
  • PARI
    a=1; b=1; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A199953 Decimal expansion of least x satisfying x^2 + cos(x) = 4*sin(x).

Original entry on oeis.org

2, 6, 1, 5, 7, 3, 9, 3, 6, 4, 7, 4, 8, 1, 1, 3, 0, 2, 1, 2, 2, 9, 6, 4, 2, 0, 1, 7, 8, 3, 1, 2, 1, 1, 6, 0, 3, 9, 7, 8, 2, 8, 5, 9, 1, 3, 8, 4, 8, 6, 7, 6, 7, 1, 5, 3, 4, 2, 1, 3, 6, 8, 5, 6, 7, 6, 5, 2, 1, 0, 9, 0, 9, 6, 7, 0, 9, 2, 1, 2, 9, 5, 8, 5, 1, 2, 1, 9, 9, 4, 6, 8, 6, 6, 9, 1, 3, 7, 3
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  0.26157393647481130212296420178312116039782...
greatest x: 2.011137342229330846002506540879639388630...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 1; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .26, .27}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199953 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.0, 2.1}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199954 *)
  • PARI
    a=1; b=1; c=4; solve(x=0, .5, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A199954 Decimal expansion of greatest x satisfying x^2+cos(x)=4*sin(x).

Original entry on oeis.org

2, 0, 1, 1, 1, 3, 7, 3, 4, 2, 2, 2, 9, 3, 3, 0, 8, 4, 6, 0, 0, 2, 5, 0, 6, 5, 4, 0, 8, 7, 9, 6, 3, 9, 3, 8, 8, 6, 3, 0, 0, 8, 4, 0, 8, 3, 8, 7, 3, 6, 0, 3, 0, 2, 4, 5, 8, 3, 9, 1, 4, 5, 9, 0, 1, 5, 3, 4, 4, 8, 6, 5, 5, 4, 5, 4, 0, 4, 2, 8, 5, 6, 1, 9, 7, 0, 4, 3, 0, 7, 4, 0, 8, 0, 4, 5, 5, 7, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  0.26157393647481130212296420178312116039782...
greatest x: 2.011137342229330846002506540879639388630...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 1; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .26, .27}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199953 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.0, 2.1}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199954 *)
  • PARI
    a=1; b=1; c=4; solve(x=2, 2.1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A199955 Decimal expansion of least x satisfying x^2+2*cos(x)=3*sin(x).

Original entry on oeis.org

7, 4, 0, 8, 0, 3, 3, 6, 8, 1, 9, 4, 1, 3, 2, 2, 3, 7, 5, 9, 6, 4, 2, 6, 9, 2, 4, 5, 4, 7, 0, 2, 1, 6, 2, 0, 9, 1, 7, 4, 2, 2, 2, 8, 9, 0, 7, 8, 0, 2, 3, 4, 5, 7, 2, 1, 8, 9, 5, 4, 4, 9, 0, 1, 2, 0, 5, 4, 3, 8, 4, 6, 0, 9, 7, 7, 9, 3, 0, 5, 3, 8, 2, 4, 5, 9, 1, 8, 8, 0, 7, 9, 2, 0, 2, 3, 7, 7, 4
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  0.74080336819413223759642692454702162091742...
greatest x: 1.854778410356751774141939581736998761204...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 2; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .74, .75}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199955 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199956 *)
  • PARI
    a=1; b=2; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018
Showing 1-10 of 136 results. Next