cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A199949 Decimal expansion of least x satisfying x^2 + cos(x) = 2*sin(x).

Original entry on oeis.org

6, 5, 9, 2, 6, 6, 0, 4, 5, 7, 6, 6, 9, 4, 6, 0, 7, 4, 5, 3, 7, 3, 4, 8, 5, 7, 9, 5, 6, 3, 0, 6, 7, 6, 1, 1, 6, 1, 5, 3, 2, 8, 0, 2, 1, 6, 4, 4, 5, 1, 6, 7, 9, 7, 3, 6, 0, 9, 4, 5, 1, 3, 0, 3, 1, 4, 1, 0, 7, 3, 6, 4, 4, 5, 5, 8, 7, 4, 2, 6, 6, 2, 4, 4, 0, 7, 1, 9, 5, 1, 9, 3, 1, 6, 4, 1, 4, 4, 7
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

For many choices of a,b,c, there are exactly two numbers x>0 satisfying a*x^2+b*cos(x)=c*sin(x).
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... least x, greatest x
1.... 1.... 2.... A199949, A199950
1.... 1.... 3.... A199951, A199952
1.... 1.... 4.... A199953, A199954
1.... 2.... 3.... A199955, A199956
1.... 2.... 4.... A199957, A199958
1.... 3.... 3.... A199959, A199960
1.... 3.... 4.... A199961, A199962
1.... 4.... 3.... A199963, A199964
1.... 4.... 4.... A199965, A199966
2.... 1.... 3.... A199967, A200003
2.... 1.... 4.... A200004, A200005
3.... 1.... 4.... A200006, A200007
4.... 1.... 4.... A200008, A200009
1... -1.... 1.... A200010, A200011
1... -1.... 2.... A200012, A200013
1... -1.... 3.... A200014, A200015
1... -1.... 4.... A200016, A200017
1... -2.... 1.... A200018, A200019
1... -2.... 2.... A200020, A200021
1... -2.... 3.... A200022, A200023
1... -2.... 4.... A200024, A200025
1... -3.... 1.... A200026, A200027
1... -3.... 2.... A200093, A200094
1... -3.... 3.... A200095, A200096
1... -3.... 4.... A200097, A200098
1... -4.... 1.... A200099, A200100
1... -4.... 2.... A200101, A200102
1... -4.... 3.... A200103, A200104
1... -4.... 4.... A200105, A200106
2... -1.... 1.... A200107, A200108
2... -1.... 2.... A200109, A200110
2... -1.... 3.... A200111, A200112
2... -1.... 4.... A200114, A200115
2... -2.... 1.... A200116, A200117
2... -2.... 3.... A200118, A200119
2... -3.... 1.... A200120, A200121
2... -3.... 2.... A200122, A200123
2... -3.... 3.... A200124, A200125
2... -3.... 4.... A200126, A200127
2... -4.... 1.... A200128, A200129
2... -4.... 3.... A200130, A200131
3... -1.... 1.... A200132, A200133
3... -1.... 2.... A200223, A200224
3... -1.... 3.... A200225, A200226
3... -1.... 4.... A200227, A200228
3... -2.... 1.... A200229, A200230
3... -2.... 2.... A200231, A200232
3... -2.... 3.... A200233, A200234
3... -2.... 4.... A200235, A200236
3... -3.... 1.... A200237, A200238
3... -3.... 2.... A200239, A200240
3... -3.... 4.... A200241, A200242
3... -4.... 1.... A200277, A200278
3... -4.... 2.... A200279, A200280
3... -4.... 3.... A200281, A200282
3... -4.... 4.... A200283, A200284
4... -1.... 1.... A200285, A200286
4... -1.... 2.... A200287, A200288
4... -1.... 3.... A200289, A200290
4... -1.... 4.... A200291, A200292
4... -2.... 1.... A200293, A200294
4... -2.... 3.... A200295, A200296
4... -3.... 1.... A200299, A200300
4... -3.... 2.... A200297, A200298
4... -3.... 3.... A200301, A200302
4... -3.... 4.... A200303, A200304
4... -4.... 1.... A200305, A200306
4... -4.... 3.... A200307, A200308
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199949, take f(x,u,v)=x^2+u*cos(x)-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			least x:  0.659266045766946074537348579563067611...
greatest x: 1.2710268008159460640047188480978502...
		

Crossrefs

Cf. A199950.

Programs

  • Mathematica
    (* Program 1:  A199949 *)
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .65, .66}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199949 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.27, 1.28}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199950 *)
    (* Program 2: implicit surface of x^2+u*cos(x)=v*sin(x) *)
    f[{x_, u_, v_}] := x^2 + u*Cos[x] - v*Sin[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, -5, 0}, {v, 0, 1}];
    ListPlot3D[Flatten[t, 1]]  (* for A199949 *)
  • PARI
    a=1; b=1; c=2; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018

Extensions

A-number corrected by Jaroslav Krizek, Nov 27 2011

A200232 Decimal expansion of greatest x satisfying 3*x^2-2*cos(x)=2*sin(x).

Original entry on oeis.org

9, 6, 3, 2, 9, 1, 3, 7, 6, 6, 1, 9, 6, 7, 9, 1, 0, 4, 6, 5, 5, 6, 4, 1, 8, 2, 9, 6, 6, 4, 1, 6, 4, 2, 3, 0, 2, 3, 0, 3, 9, 1, 9, 8, 6, 7, 2, 7, 0, 6, 2, 5, 1, 0, 1, 2, 1, 4, 5, 6, 4, 6, 1, 4, 8, 6, 2, 1, 1, 4, 2, 3, 8, 3, 8, 8, 9, 9, 3, 5, 1, 0, 0, 4, 1, 0, 9, 7, 1, 9, 4, 2, 1, 6, 6, 1, 4, 4, 8
Offset: 0

Views

Author

Clark Kimberling, Nov 14 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.508066683701868134653059484203509821...
greatest x: 0.9632913766196791046556418296641642...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 3; b = -2; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.51, -.50}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200231 *)
    r = x /. FindRoot[f[x] == g[x], {x, .96, .97}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200232 *)
  • PARI
    a=3; b=-2; c=2; solve(x=.96, .97, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A247607 Primes whose number of symmetric connections to other primes within the same power of two interval exceeds the number of symmetric connections to composites.

Original entry on oeis.org

5, 7, 17, 19, 29, 31, 43, 59, 103, 281, 457, 461, 463, 499, 607, 1409, 1451, 2143, 2657, 4229, 16063, 19583, 19699, 62143, 65537, 70919, 107347, 113159, 124783, 124981, 600703, 3103423, 18936719
Offset: 1

Views

Author

Brad Clardy, Sep 22 2014

Keywords

Comments

While there may be some additional terms, it is thought to be a finite sequence. An exhaustive search was conducted up to 2^29.
Members larger than 2^8 will also be in A200321.

Examples

			In the interval (2^4,2^5) [17,19,21,23,25,27,29,31], the prime 17 symmetrically couples with 31 around the midpoint of the interval, 23 around the midpoint of the halved interval, and 19 in the quartered interval. There is no composite couple. It has 3 prime and 0 composite symmetric connections. The same process for 19 produces 2 prime and 1 composite connection. Therefore 17 and 19 are members. 23 couples with 25, 17 and 22. It has 1 prime and 2 composite connections so it is not a member.
		

Crossrefs

Cf. A200231.

Programs

  • Magma
    XOR := func;
    function PCcoord(X,i,P,C)
    if (i eq 1) then
        if (P gt C) then return true;
          else
          return false,P,C;
        end if;
      else
        xornum:=2^i - 2;
        xorcouple:=XOR(X, xornum);
        if (IsPrime(xorcouple)) then
           return PCcoord(X, i-1,P+1,C);
        else
           return PCcoord(X, i-1,P,C+1);
        end if;
      end if;
    end function;
    for k:= 1 to 2^10 + 1 by 2 do
      if IsPrime(k) then
         if PCcoord(k,Ilog2(k),0,0) then k;
         end if;
      end if;
    end for;
Showing 1-3 of 3 results.