cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A199949 Decimal expansion of least x satisfying x^2 + cos(x) = 2*sin(x).

Original entry on oeis.org

6, 5, 9, 2, 6, 6, 0, 4, 5, 7, 6, 6, 9, 4, 6, 0, 7, 4, 5, 3, 7, 3, 4, 8, 5, 7, 9, 5, 6, 3, 0, 6, 7, 6, 1, 1, 6, 1, 5, 3, 2, 8, 0, 2, 1, 6, 4, 4, 5, 1, 6, 7, 9, 7, 3, 6, 0, 9, 4, 5, 1, 3, 0, 3, 1, 4, 1, 0, 7, 3, 6, 4, 4, 5, 5, 8, 7, 4, 2, 6, 6, 2, 4, 4, 0, 7, 1, 9, 5, 1, 9, 3, 1, 6, 4, 1, 4, 4, 7
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

For many choices of a,b,c, there are exactly two numbers x>0 satisfying a*x^2+b*cos(x)=c*sin(x).
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... least x, greatest x
1.... 1.... 2.... A199949, A199950
1.... 1.... 3.... A199951, A199952
1.... 1.... 4.... A199953, A199954
1.... 2.... 3.... A199955, A199956
1.... 2.... 4.... A199957, A199958
1.... 3.... 3.... A199959, A199960
1.... 3.... 4.... A199961, A199962
1.... 4.... 3.... A199963, A199964
1.... 4.... 4.... A199965, A199966
2.... 1.... 3.... A199967, A200003
2.... 1.... 4.... A200004, A200005
3.... 1.... 4.... A200006, A200007
4.... 1.... 4.... A200008, A200009
1... -1.... 1.... A200010, A200011
1... -1.... 2.... A200012, A200013
1... -1.... 3.... A200014, A200015
1... -1.... 4.... A200016, A200017
1... -2.... 1.... A200018, A200019
1... -2.... 2.... A200020, A200021
1... -2.... 3.... A200022, A200023
1... -2.... 4.... A200024, A200025
1... -3.... 1.... A200026, A200027
1... -3.... 2.... A200093, A200094
1... -3.... 3.... A200095, A200096
1... -3.... 4.... A200097, A200098
1... -4.... 1.... A200099, A200100
1... -4.... 2.... A200101, A200102
1... -4.... 3.... A200103, A200104
1... -4.... 4.... A200105, A200106
2... -1.... 1.... A200107, A200108
2... -1.... 2.... A200109, A200110
2... -1.... 3.... A200111, A200112
2... -1.... 4.... A200114, A200115
2... -2.... 1.... A200116, A200117
2... -2.... 3.... A200118, A200119
2... -3.... 1.... A200120, A200121
2... -3.... 2.... A200122, A200123
2... -3.... 3.... A200124, A200125
2... -3.... 4.... A200126, A200127
2... -4.... 1.... A200128, A200129
2... -4.... 3.... A200130, A200131
3... -1.... 1.... A200132, A200133
3... -1.... 2.... A200223, A200224
3... -1.... 3.... A200225, A200226
3... -1.... 4.... A200227, A200228
3... -2.... 1.... A200229, A200230
3... -2.... 2.... A200231, A200232
3... -2.... 3.... A200233, A200234
3... -2.... 4.... A200235, A200236
3... -3.... 1.... A200237, A200238
3... -3.... 2.... A200239, A200240
3... -3.... 4.... A200241, A200242
3... -4.... 1.... A200277, A200278
3... -4.... 2.... A200279, A200280
3... -4.... 3.... A200281, A200282
3... -4.... 4.... A200283, A200284
4... -1.... 1.... A200285, A200286
4... -1.... 2.... A200287, A200288
4... -1.... 3.... A200289, A200290
4... -1.... 4.... A200291, A200292
4... -2.... 1.... A200293, A200294
4... -2.... 3.... A200295, A200296
4... -3.... 1.... A200299, A200300
4... -3.... 2.... A200297, A200298
4... -3.... 3.... A200301, A200302
4... -3.... 4.... A200303, A200304
4... -4.... 1.... A200305, A200306
4... -4.... 3.... A200307, A200308
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199949, take f(x,u,v)=x^2+u*cos(x)-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			least x:  0.659266045766946074537348579563067611...
greatest x: 1.2710268008159460640047188480978502...
		

Crossrefs

Cf. A199950.

Programs

  • Mathematica
    (* Program 1:  A199949 *)
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .65, .66}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199949 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.27, 1.28}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199950 *)
    (* Program 2: implicit surface of x^2+u*cos(x)=v*sin(x) *)
    f[{x_, u_, v_}] := x^2 + u*Cos[x] - v*Sin[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, -5, 0}, {v, 0, 1}];
    ListPlot3D[Flatten[t, 1]]  (* for A199949 *)
  • PARI
    a=1; b=1; c=2; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018

Extensions

A-number corrected by Jaroslav Krizek, Nov 27 2011

A200112 Decimal expansion of greatest x satisfying 2*x^2-cos(x) = 3*sin(x).

Original entry on oeis.org

1, 2, 5, 7, 4, 1, 1, 4, 2, 9, 4, 9, 4, 7, 5, 9, 2, 5, 6, 0, 2, 2, 3, 7, 3, 0, 9, 8, 1, 4, 8, 0, 3, 8, 9, 5, 2, 5, 2, 1, 6, 0, 2, 4, 9, 3, 6, 7, 8, 6, 4, 7, 2, 8, 0, 1, 2, 9, 2, 2, 8, 1, 6, 3, 4, 8, 6, 2, 7, 9, 2, 8, 1, 1, 1, 6, 5, 0, 3, 7, 3, 9, 5, 0, 0, 0, 0, 0, 8, 8, 4, 9, 9, 4, 8, 5, 4, 7, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.27418592805983157901293857616592610671...
greatest x: 1.25741142949475925602237309814803895...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 2; b = -1; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.28, -.27}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200111 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200112 *)
  • PARI
    a=2; b=-1; c=3; solve(x=1.25, 1.26, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A239100 Solution to the problem of finding the number of comparisons needed for optimal merging of 3 elements with n elements.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 6, 8, 10, 13, 17, 22, 28, 37, 47, 59, 75, 96, 120, 153, 194, 242, 309, 391, 487, 619, 784, 976, 1241, 1570, 1954, 2485, 3143, 3911, 4971, 6288, 7824, 9945, 12578, 15650, 19893, 25159, 31303, 39787, 50320, 62608, 79577, 100642, 125218, 159157
Offset: 1

Views

Author

N. J. A. Sloane, Mar 24 2014

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if (n<9, v=[0, 1, 1, 2, 3, 4, 6, 8]; v[n], ndt = n\3; nmt = n%3; if (nmt==0, 43*2^(ndt-2)\7 - 2, if (nmt == 1, 107*2^(ndt-3)\7 - 2, (17*2^ndt-6)\7 - 1))); \\ Michel Marcus, Mar 26 2014
    
  • Python
    def A239100(n):
        if n <= 8: return (0,1,1,2,3,4,6,8)[n-1]
        r, b = divmod(n,3)
        return ((107<Chai Wah Wu, Mar 28 2023

Formula

For r >= 3, a(3r) = floor(43*2^(r-2)/7)-2,
a(3r+1) = floor(107*2^(r-3)/7)-2,
a(3r+2) = floor((17*2^r-6)/7)-1; initial terms are shown in sequence.
From Chai Wah Wu, Mar 28 2023: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-6) - a(n-7) + 2*a(n-9) - 2*a(n-10) for n > 18.
G.f.: x*(2*x^17 - x^16 - x^15 + x^14 + x^13 - x^12 + 2*x^11 - x^10 + x^8 + x^6 + x^5 + x^3 + x)/((x - 1)*(2*x^3 - 1)*(x^6 + x^3 + 1)). (End)

Extensions

More terms from Michel Marcus, Mar 26 2014
Showing 1-3 of 3 results.