cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A213643 E.g.f. satisfies: A(x) = x + A(x)^2*exp(A(x)).

Original entry on oeis.org

1, 2, 18, 252, 4940, 124350, 3823722, 138915560, 5822192952, 276522143130, 14677209803630, 860990013672492, 55315008281020644, 3862656545279925302, 291301089508829138130, 23595204076694940812880, 2042970533426395737658352, 188298566037963463789282482
Offset: 1

Views

Author

Paul D. Hanna, Jun 17 2012

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 18*x^3/3! + 252*x^4/4! + 4940*x^5/5! +...
where A(x - x^2*exp(x)) = x and A(x) = x + A(x)^2*exp(A(x)).
Related expansions:
A(x)^2 = 2*x^2/2! + 12*x^3/3! + 168*x^4/4! + 3240*x^5/5! + 80880*x^6/6! +...
A(x) = x*Catalan(x*G(x)) where G(x) = exp(A(x)):
exp(A(x)) = 1 + x + 3*x^2/2! + 25*x^3/3! + 349*x^4/4! + 6821*x^5/5! + 171421*x^6/6! +..., which is the e.g.f. of A161629.
A(x) = x + exp(x)*x^2 + d/dx exp(2*x)*x^4/2! + d^2/dx^2 exp(3*x)*x^6/3! + d^3/dx^3 exp(4*x)*x^8/4! +...
log(A(x)/x) = exp(x)*x + d/dx exp(2*x)*x^3/2! + d^2/dx^2 exp(3*x)*x^5/3! + d^3/dx^3 exp(4*x)*x^7/4! +...
Ordinary Generating Function:
O.g.f.: x + 2*x^2 + 18*x^3 + 252*x^4 + 4940*x^5 + 124350*x^6 +...
O.g.f.: x + 2*x^2/(1-x)^3 + 6*2!*x^3/(1-2*x)^5 + 20*3!*x^4/(1-3*x)^7 + 70*4!*x^5/(1-4*x)^9 + 252*5!*x^6/(1-5*x)^11 +...+ (2*n)!/n!*x^(n+1)/(1-n*x)^(2*n+1) +...
		

Crossrefs

Programs

  • Maple
    a:= n-> n!*coeff(series(RootOf(A=x+A^2*exp(A), A), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 18 2013
  • Mathematica
    Flatten[{1,Table[Sum[k^(n-k-1)/(n-k-1)!*(n+k-1)!/k!,{k,0,n-1}],{n,2,20}]}] (* Vaclav Kotesovec, Jul 13 2013 *)
  • PARI
    {a(n)=sum(k=0,n-1, k^(n-k-1)/(n-k-1)! * (n+k-1)!/k! )}
    
  • PARI
    {a(n)=n!*polcoeff(serreverse(x-x^2*exp(x+x*O(x^n))),n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, exp(m*x+x*O(x^n))*x^(2*m)/m!)); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, exp(m*x+x*O(x^n))*x^(2*m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    
  • PARI
    /* O.g.f.: */
    {a(n)=polcoeff(sum(m=0,n,(2*m)!/m!*x^(m+1)/(1-m*x+x*O(x^n))^(2*m+1)),n)}

Formula

E.g.f.: A(x) = log(G(x)) where G(x) = exp(x*Catalan(x*G(x))) is the e.g.f. of A161629, and Catalan(x) = (1-sqrt(1-4*x))/(2*x).
E.g.f.: Series_Reversion(x - x^2*exp(x)).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) exp(n*x)*x^(2*n) / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) exp(n*x)*x^(2*n-1) / n! ).
O.g.f.: Sum_{n>=0} (2*n)!/n! * x^(n+1) / (1 - n*x)^(2*n+1).
a(n) = Sum_{k=0..n-1} k^(n-k-1)/(n-k-1)! * (n+k-1)!/k!.
a(n) = n*A213644(n-1).
Limit n->infinity (a(n)/n!)^(1/n) = r*(1+r)/(1-r) = 5.5854662015218413..., where r = 0.7603592340333989... is the root of the equation (1-r^2)/r^2 = exp((r-1)/r). - Vaclav Kotesovec, Jul 13 2013
a(n) ~ (1-r) * n^(n-1) * (r*(1+r)/(1-r))^n / (sqrt(r*(1+2*r-r^2))*exp(n)). - Vaclav Kotesovec, Dec 28 2013

A213640 E.g.f. satisfies: A(x) = x - log(1 - A(x)^2).

Original entry on oeis.org

1, 2, 12, 132, 2040, 40560, 986160, 28344960, 940222080, 35350378560, 1485586206720, 69006955691520, 3510875174526720, 194162144086310400, 11597083480958976000, 744005639375065267200, 51024015181398702643200, 3725042532308649628876800, 288434288836744276094668800
Offset: 1

Views

Author

Paul D. Hanna, Jun 17 2012

Keywords

Examples

			E.g.f: A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2040*x^5/5! +...
Related series:
A(x)^2 = 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1800*x^5/5! + 35280*x^6/6! +...
-log(1-A(x)^2) = 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2040*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x + Log[1-x^2],{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 10 2014 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(x+log(1-x^2 +x*O(x^n))), n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, (-log(1 - x^2+x*O(x^n)))^m)/m!); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, (-log(1 - x^2+x*O(x^n)))^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)}

Formula

E.g.f. A(x) satisfies:
(1) A(x + log(1-x^2)) = x.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (-log(1-x^2))^n / n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (-log(1-x^2))^n/x / n! ).
a(n) = n*A213641(n-1).
a(n) ~ sqrt(1-1/sqrt(2)) * n^(n-1) / (exp(n) * (sqrt(2) -1 + log(2*(sqrt(2)-1)))^(n-1/2)). - Vaclav Kotesovec, Jan 10 2014

A200320 E.g.f. satisfies: A(x) = x-1 + exp(A(x)^2/2).

Original entry on oeis.org

1, 1, 3, 18, 150, 1590, 20580, 314790, 5554710, 111071520, 2482076520, 61301435580, 1658129152680, 48749053413060, 1547849157554700, 52785934927525800, 1924269399236784600, 74672595203551745400, 3073314600152521124400, 133716009695044269893400, 6132253708189762323370200
Offset: 1

Views

Author

Paul D. Hanna, Nov 15 2011

Keywords

Examples

			E.g.f.: A(x) = x + x^2/2! + 3*x^3/3! + 18*x^4/4! + 150*x^5/5! +...
where A(1+x - exp(x^2/2)) = x and A(x) = x-1 + exp(A(x)^2/2).
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[1 - E^(x^2/2) + x,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 10 2014 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(1+x-exp(x^2/2+x^2*O(x^n))),n)}

Formula

E.g.f.: Series_Reversion(1+x - exp(x^2/2)).
a(n) ~ n^(n-1) * c^(n/2) / (sqrt(1+c) * exp(n) * (c-1+sqrt(c))^(n-1/2)), where c = LambertW(1) = 0.5671432904... (see A030178). - Vaclav Kotesovec, Jan 10 2014
Showing 1-3 of 3 results.