A213644
E.g.f. satisfies: A(x) = 1 + x*A(x)^2*exp(x*A(x)).
Original entry on oeis.org
1, 1, 6, 63, 988, 20725, 546246, 17364445, 646910328, 27652214313, 1334291800330, 71749167806041, 4255000637001588, 275904038948566093, 19420072633921942542, 1474700254793433800805, 120174737260376219862256, 10461031446553525766071249, 968785652772129485926955538
Offset: 0
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 63*x^3/3! + 988*x^4/4! + 20725*x^5/5! +...
such that A(x-x^2*exp(x)) = 1/(1-x*exp(x)) where:
1/(1-x*exp(x)) = 1 + x + 4*x^2/2! + 21*x^3/3! + 148*x^4/4! + 1305*x^5/5! +...+ A006153(n)*x^n/n! +...
-
Flatten[{1,Table[1/(n+1)*Sum[k^(n-k)/(n-k)!*(n+k)!/k!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jul 15 2013 *)
-
{a(n)=1/(n+1)*sum(k=0, n, k^(n-k)/(n-k)! * (n+k)!/k! )}
-
{a(n)=n!*polcoeff((1/x)*serreverse(x-x^2*exp(x+x*O(x^n))),n)}
for(n=0,25,print1(a(n),", "))
A161629
E.g.f. satisfies: A(x) = exp( x*Catalan(x*A(x)) ), where Catalan(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of A000108.
Original entry on oeis.org
1, 1, 3, 25, 349, 6821, 171421, 5265625, 191160201, 8007548617, 380157603481, 20171371753061, 1182973489103869, 75984447924612397, 5305029326492409333, 400014338565211619761, 32396515980658185762961
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 25*x^3/3! + 349*x^4/4! + 6821*x^5/5! +...
log(A(x))/x = 1 + x*A(x) + 2*x^2*A(x)^2 + 5*x^3*A(x)^3 + 14*x^4*A(x)^4 +...+ A000108(n)*x^n*A(x)^n +...
log(A(x))/x = 1 + x + 6*x^2/2! + 63*x^3/3! + 988*x^4/4! + 20725*x^5/5! +...+ A213644(n)*x^n/n! +...
log(A(x)) = x + 2*x^2/2! + 18*x^3/3! + 252*x^4/4! + 4940*x^5/5! +...+ A213643(n)*x^n/n! +...
Ordinary Generating Function:
O.g.f.: 1 + x + 3*x^2 + 25*x^3 + 349*x^4 + 6821*x^5 + 171421*x^6 +...
O.g.f.: 1 + x/(1-x) + 2*x^2/(1-2*x)^3 + 6*2!*x^3/(1-3*x)^5 + 20*3!*x^4/(1-4*x)^7 + 70*4!*x^5/(1-5*x)^9 + 252*5!*x^6/(1-6*x)^11 +...+ (2*n-2)!/(n-1)!*x^n/(1-n*x)^(2*n-1) +...
-
Flatten[{1,Table[Sum[n!/k!*(n-k+1)^(k-1)*Binomial[2*n-k, n-k]*k/(2*n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 26 2014 *)
-
{a(n,m=1)=if(n==0,1,sum(k=0,n,n!/k!*m*(m+n-k)^(k-1)*binomial(2*n-k,n-k)*k/(2*n-k)))}
-
{a(n,m=1)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp((1-sqrt(1-4*x*A))/(2*A)));n!*polcoeff(A^m,n)}
-
/* O.g.f.: */
{a(n)=polcoeff(1+sum(m=1, n, (2*m-2)!/(m-1)!*x^m/(1-m*x+x*O(x^n))^(2*m-1)), n)}
A143136
E.g.f. satisfies: A(x) = x + sinh( A(x) )^2.
Original entry on oeis.org
1, 2, 12, 128, 1920, 36992, 870912, 24232448, 777999360, 28309164032, 1151292628992, 51750540443648, 2547747292446720, 136336755956252672, 7879446478581399552, 489119124160488931328, 32456290094449950720000
Offset: 1
A(x) = x + 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 1920*x^5/5! + ...
sinh(A(x)) = G(x) is the e.g.f. of A143137:
G(x) = x + 2*x^2/2! + 13*x^3/3! + 140*x^4/4! + 2101*x^5/5! + ...
Related expansions:
A(x) = x + sinh(x)^2 + d/dx sinh(x)^4/2! + d^2/dx^2 sinh(x)^6/3! + d^3/dx^3 sinh(x)^8/4! + ...
log(A(x)/x) = sinh(x)^2/x + d/dx (sinh(x)^4/x)/2! + d^2/dx^2 (sinh(x)^6/x)/3! + d^3/dx^3 (sinh(x)^8/x)/4! +...
-
Rest[CoefficientList[InverseSeries[Series[x - Sinh[x]^2,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
-
{a(n)=n!*polcoeff(serreverse(x-sinh(x+x*O(x^n))^2),n)}
-
{a(n)=local(A=x);for(i=0,n,A=x + sinh(A)^2);n!*polcoeff(A,n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, sinh(x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, sinh(x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
A214688
E.g.f. equals the series reversion of x - x^2*exp(2*x).
Original entry on oeis.org
1, 2, 24, 408, 9760, 299520, 11223744, 496802432, 25365482496, 1467480983040, 94873742909440, 6778628603670528, 530412734126346240, 45110083291805622272, 4143219058165730672640, 408715543077297795072000, 43097868598208296895512576, 4837629293480336802779234304
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 24*x^3/3! + 408*x^4/4! + 9760*x^5/5! + ...
where A(x - x^2*exp(2*x)) = x and A(x) = x + A(x)^2*exp(2*A(x)).
The e.g.f. satisfies:
(3) A(x) = x + x^2*exp(2*A(x)) + 2*x^3*exp(4*A(x)) + 5*x^4*exp(6*A(x)) + 14*x^5*exp(8*A(x)) + 42*x^6*exp(10*A(x)) + ...
(4) log(A(x)/x) = x*exp(2*A(x)) + 3*x^2*exp(4*A(x))/2 + 10*x^3*exp(6*A(x))/3 + 35*x^4*exp(8*A(x))/4 + 126*x^5*exp(10*A(x))/5 + ...
(5) A(x) = x + x^2*exp(2*x) + d/dx x^4*exp(4*x)/2! + d^2/dx^2 x^6*exp(6*x)/3! + d^3/dx^3 x^8*exp(8*x)/4! + ...
(6) log(A(x)/x) = x*exp(2*x) + d/dx x^3*exp(4*x)/2! + d^2/dx^2 x^5*exp(6*x)/3! + d^3/dx^3 x^7*exp(8*x)/4! + ...
Related expansions:
A(x) = x*Catalan(x*G(x)) where G(x) = exp(2*A(x)):
exp(A(x)) = 1 + x + 3*x^2/2! + 31*x^3/3! + 529*x^4/4! + 12601*x^5/5! + 385891*x^6/6! + ...
exp(2*A(x)) = 1 + 2*x + 8*x^2/2! + 80*x^3/3! + 1360*x^4/4! + 32352*x^5/5! + 989824*x^6/6! + ..., which is the e.g.f. of A214689.
A(x)^2 = 2*x^2/2! + 12*x^3/3! + 216*x^4/4! + 5040*x^5/5! + 153120*x^6/6! + ...
Ordinary Generating Function:
O.g.f.: x + 2*x^2 + 24*x^3 + 408*x^4 + 9760*x^5 + 299520*x^6 + ...
O.g.f.: x + 2*x^2/(1-2*x)^3 + 6*2!*x^3/(1-4*x)^5 + 20*3!*x^4/(1-6*x)^7 + 70*4!*x^5/(1-8*x)^9 + 252*5!*x^6/(1-10*x)^11 + ... + (2*n)!/n!*x^(n+1)/(1-2*n*x)^(2*n+1) + ...
-
A214688:= func< n | n eq 1 select 1 else (&+[Binomial(n-1,k)*Binomial(n+k-1,k)*Factorial(k)*(2*k)^(n-k-1): k in [1..n-1]]) >;
[A214688(n): n in [1..30]]; // G. C. Greubel, Mar 07 2024
-
Flatten[{1,Table[Sum[(2*k)^(n-k-1)/(n-k-1)!*(n+k-1)!/k!,{k,1,n-1}],{n,2,20}]}] (* Vaclav Kotesovec, Jul 13 2013 *)
-
{a(n)=sum(k=0, n-1, (2*k)^(n-k-1)/(n-k-1)! * (n+k-1)!/k! )}
-
{a(n)=n!*polcoeff(serreverse(x-x^2*exp(2*x+x*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, exp(2*m*x+x*O(x^n))*x^(2*m)/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, exp(2*m*x+x*O(x^n))*x^(2*m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
-
/* From o.g.f.: */
{a(n)=polcoeff(sum(m=0, n, (2*m)!/m!*x^(m+1)/(1-2*m*x+x*O(x^n))^(2*m+1)), n)}
-
def A214688(n): return int(n==1)+sum(binomial(n-1,k)*binomial(n+k-1,k)*factorial(k)*(2*k)^(n-k-1) for k in range(1,n))
[A214688(n) for n in range(1,30)] # G. C. Greubel, Mar 07 2024
A215003
E.g.f. satisfies: A(x) = x + A(x)^2*exp(A(x))/2.
Original entry on oeis.org
1, 1, 6, 51, 610, 9360, 175371, 3881269, 99083916, 2866173795, 92650139560, 3309877247886, 129495296417565, 5506601964331741, 252882022593123210, 12473008516763238375, 657621285983402967766, 36908182475893682882532, 2196924777991866630353571
Offset: 1
E.g.f.: A(x) = x + x^2/2! + 6*x^3/3! + 51*x^4/4! + 610*x^5/5! + 9360*x^6/6! +...
where A(x - x^2*exp(x)/2) = x and A(x) = x + A(x)^2*exp(A(x))/2.
Related expansions:
A(x)^2 = 2*x^2/2! + 6*x^3/3! + 54*x^4/4! + 630*x^5/5! + 9570*x^6/6! +...
exp(A(x)) = 1 + x + 2*x^2/2! + 10*x^3/3! + 85*x^4/4! + 1011*x^5/5! + 15466*x^6/6! + 289213*x^7/7! +...
A(x) = x + exp(x)*x^2/2 + d/dx exp(2*x)*x^4/2!/4 + d^2/dx^2 exp(3*x)*x^6/3!/8 + d^3/dx^3 exp(4*x)*x^8/4!/16 +...
log(A(x)/x) = exp(x)*x/2 + d/dx exp(2*x)*x^3/2!/4 + d^2/dx^2 exp(3*x)*x^5/3!/8 + d^3/dx^3 exp(4*x)*x^7/4!/16 +...
Ordinary Generating Function:
O.g.f.: x + x^2 + 6*x^3 + 51*x^4 + 610*x^5 + 9360*x^6 + 175371*x^7 +...
O.g.f.: x + 2*x^2/(1-x)^3/2 + 6*2!*x^3/(1-2*x)^5/4 + 20*3!*x^4/(1-3*x)^7/8 + 70*4!*x^5/(1-4*x)^9/16 + 252*5!*x^6/(1-5*x)^11/32 +...+ (2*n)!/n!*x^(n+1)/(1-n*x)^(2*n+1)/2^n +...
-
Rest[CoefficientList[InverseSeries[Series[x - x^2*E^x/2, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Dec 28 2013 *)
-
{a(n)=sum(k=0, n-1, k^(n-k-1)/(n-k-1)! * (n+k-1)!/k!/2^k )}
-
{a(n)=n!*polcoeff(serreverse(x-x^2*exp(x+x*O(x^n))/2), n)}
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, exp(m*x+x*O(x^n))/2^m*x^(2*m)/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, exp(m*x+x*O(x^n))/2^m*x^(2*m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
-
/* O.g.f.: */
{a(n)=polcoeff(sum(m=0, n, (2*m)!/m!/2^m*x^(m+1)/(1-m*x+x*O(x^n))^(2*m+1)), n)}
A380841
Array read by ascending antidiagonals: A(n,k) = n! * [x^n] 1/(1 - x*exp(x))^k.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 21, 10, 3, 1, 0, 148, 66, 18, 4, 1, 0, 1305, 560, 141, 28, 5, 1, 0, 13806, 5770, 1380, 252, 40, 6, 1, 0, 170401, 69852, 16095, 2776, 405, 54, 7, 1, 0, 2403640, 970886, 217458, 35940, 4940, 606, 70, 8, 1, 0, 38143377, 15228880, 3335745, 533304, 70045, 8088, 861, 88, 9, 1
Offset: 0
Array begins as:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 4, 10, 18, 28, 40, 54, ...
0, 21, 66, 141, 252, 405, 606, ...
0, 148, 560, 1380, 2776, 4940, 8088, ...
0, 1305, 5770, 16095, 35940, 70045, 124350, ...
...
-
A[n_,k_]:=n!SeriesCoefficient[1/(1-x*Exp[x])^k,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
A215363
E.g.f. satisfies: A(x) = x + A(x)^2*cosh(A(x)).
Original entry on oeis.org
1, 2, 12, 132, 2040, 40350, 974400, 27805736, 915505920, 34160797530, 1424581678080, 65660547312492, 3314551571595264, 181866769617012662, 10777121944589844480, 685937077729538151120, 46668919680893409361920, 3380042082757952844150066, 259638732115410022642483200
Offset: 1
E.g.f: A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2040*x^5/5! +...
Series expressions:
A(x) = x + cosh(x)*x^2 + d/dx cosh(x)^2*x^4/2! + d^2/dx^2 cosh(x)^3*x^6/3! + d^3/dx^3 cosh(x)^4*x^8/4! +...
log(A(x)/x) = cosh(x)*x + d/dx cosh(x)^2*x^3/2! + d^2/dx^2 cosh(x)^3*x^5/3! + d^3/dx^3 cosh(x)^4*x^7/4! +...
-
Rest[CoefficientList[InverseSeries[Series[x - x^2*Cosh[x], {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 13 2014 *)
-
{a(n)=n!*polcoeff(serreverse(x-x^2*cosh(x+x*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, cosh(x+x*O(x^n))^m*x^(2*m)/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, cosh(x+x*O(x^n))^m*x^(2*m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
-
{a(n)=n!*polcoeff(x/(1 - x*cosh(x+x*O(x^n)))^n/n, n)}
A380842
Main diagonal of the array A380841.
Original entry on oeis.org
1, 1, 10, 141, 2776, 70045, 2157156, 78452521, 3290644288, 156380715801, 8304267312100, 487328231729581, 31318669850761008, 2187567259278425557, 165011952533314548676, 13368463736048341225425, 1157693100510102752463616, 106719312722496774534400177, 10433609651067618426072766020
Offset: 0
-
A380841[n_,k_]:=n!SeriesCoefficient[1/(1-x*Exp[x])^k,{x,0,n}]; Table[A380841[n,n],{n,0,18}]
-
a(n) = n!*sum(k=0, n, k^(n-k)*binomial(k+n-1, k)/(n-k)!); \\ Seiichi Manyama, Feb 06 2025
A214363
E.g.f. satisfies: A(x) = x + A(x)^2 * cosh(A(x))^2 / 2.
Original entry on oeis.org
1, 1, 3, 27, 285, 3585, 56595, 1062131, 22868685, 557624745, 15204727395, 458112683787, 15113457195837, 541914801559313, 20984168325697395, 872681528769576675, 38793582477781496685, 1835683831177469267769, 92124361183712633639235, 4887330703061330205124475
Offset: 1
E.g.f: A(x) = x + x^2/2! + 3*x^3/3! + 27*x^4/4! + 285*x^5/5! + 3585*x^6/6! +...
Related expansions:
A(x)^2 = 2*x^2/2! + 6*x^3/3! + 30*x^4/4! + 330*x^5/5! + 4410*x^6/6! + 67830*x^7/7! +...
A(x) = x + cosh(x)^2*x^2/2 + d/dx cosh(x)^4*x^4/(4*2!) + d^2/dx^2 cosh(x)^6*x^6/(8*3!) + d^3/dx^3 cosh(x)^8*x^8/(16*4!) +...
log(A(x)/x) = 1 + cosh(x)^2*x/2 + d/dx cosh(x)^4*x^3/(4*2!) + d^2/dx^2 cosh(x)^6*x^5/(8*3!) + d^3/dx^3 cosh(x)^8*x^7/(16*4!) +...
-
Rest[CoefficientList[InverseSeries[Series[x - (x^2*Cosh[x]^2)/2,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 12 2014 *)
-
{a(n)=n!*polcoeff(serreverse(x-x^2/2*cosh(x+x*O(x^n))^2),n)}
for(n=1,30,print1(a(n),", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, cosh(x+x*O(x^n))^(2*m)*x^(2*m)/2^m/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, cosh(x+x*O(x^n))^(2*m)*x^(2*m-1)/2^m/m!)+x*O(x^n))); n!*polcoeff(A, n)}
A227462
E.g.f. equals the series reversion of x - x^2*exp(x^2).
Original entry on oeis.org
1, 2, 12, 144, 2400, 50760, 1310400, 39984000, 1407490560, 56143130400, 2502730137600, 123302540148480, 6653043673436160, 390182090889951360, 24713127865269043200, 1681180295452142284800, 122252619549518954496000, 9463442426016057083404800, 776944497581062575154790400
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 144*x^4/4! + 2400*x^5/5! +...
where A(x) = x + A(x)^2*exp(A(x)^2).
The e.g.f. satisfies:
(3) A(x) = x + x^2*exp(A(x)^2) + 2*x^3*exp(2*A(x)^2) + 5*x^4*exp(3*A(x)^2) + 14*x^5*exp(4*A(x)^2) + 42*x^6*exp(5*A(x)^2) +...
(4) log(A(x)/x) = x*exp(A(x)^2) + 3*x^2*exp(2*A(x)^2)/2 + 10*x^3*exp(3*A(x)^2)/3 + 35*x^4*exp(4*A(x)^2)/4 + 126*x^5*exp(5*A(x)^2)/5 +...
(5) A(x) = x + x^2/2*exp(x^2) + d/dx x^4/4*exp(2*x^2)/2! + d^2/dx^2 x^6/8*exp(3*x^2)/3! + d^3/dx^3 x^8/16*exp(4*x^2)/4! +...
(6) log(A(x)/x) = x*exp(x^2)/2 + d/dx x*exp(2*x^2)/2! + d^2/dx^2 x^2*exp(3*x^2)/3! + d^3/dx^3 x^3*exp(4*x^2)/4! +...
-
Table[(n-1)!*SeriesCoefficient[(x/(x-x^2*E^(x^2)))^n,{x,0,n-1}],{n,1,20}] (* Vaclav Kotesovec, Jul 28 2013 *)
-
{a(n)=n!*polcoeff(serreverse(x-x^2*exp(x^2 +x*O(x^n))), n)}
for(n=1,25,print1(a(n),", "))
-
/* E.g.f. A(x) = x*Catalan( x*exp(A(x)^2) ): */
{a(n)=local(A=x); for(i=1,n,A=(1-sqrt(1-4*x*exp(A^2 +x^2*O(x^n)) ))/2*exp(-A^2 +x*O(x^n)) ); n!*polcoeff(A,n)}
for(n=1,25,print1(a(n),", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^(2*m)*exp(x^2+x*O(x^n))^m/m!)); n!*polcoeff(A, n)}
for(n=1,25,print1(a(n),", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(2*m-1)*exp(x^2+x*O(x^n))^m/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1,25,print1(a(n),", "))
Showing 1-10 of 10 results.
Comments