cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A213644 E.g.f. satisfies: A(x) = 1 + x*A(x)^2*exp(x*A(x)).

Original entry on oeis.org

1, 1, 6, 63, 988, 20725, 546246, 17364445, 646910328, 27652214313, 1334291800330, 71749167806041, 4255000637001588, 275904038948566093, 19420072633921942542, 1474700254793433800805, 120174737260376219862256, 10461031446553525766071249, 968785652772129485926955538
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 63*x^3/3! + 988*x^4/4! + 20725*x^5/5! +...
such that A(x-x^2*exp(x)) = 1/(1-x*exp(x)) where:
1/(1-x*exp(x)) = 1 + x + 4*x^2/2! + 21*x^3/3! + 148*x^4/4! + 1305*x^5/5! +...+ A006153(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[1/(n+1)*Sum[k^(n-k)/(n-k)!*(n+k)!/k!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jul 15 2013 *)
  • PARI
    {a(n)=1/(n+1)*sum(k=0, n, k^(n-k)/(n-k)! * (n+k)!/k! )}
    
  • PARI
    {a(n)=n!*polcoeff((1/x)*serreverse(x-x^2*exp(x+x*O(x^n))),n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f. satisfies: A(x) = 1/(1 - x*A(x)*exp(x*A(x))).
E.g.f. satisfies: A(x-x^2*exp(x)) = 1/(1-x*exp(x)).
a(n) = 1/(n+1) * Sum_{k=0..n} k^(n-k)/(n-k)! * (n+k)!/k!.
a(n) = A213643(n+1)/(n+1).
Limit n->infinity (a(n)/n!)^(1/n) = r*(1+r)/(1-r) = 5.5854662015218413..., where r = 0.7603592340333989... is the root of the equation (1-r^2)/r^2 = exp((r-1)/r), same as for A213643. - Vaclav Kotesovec, Jul 15 2013
a(n) ~ (1+r)*sqrt(r/(1+2*r-r^2)) * n^(n-1) * (r*(1+r)/(1-r))^n / exp(n). - Vaclav Kotesovec, Dec 28 2013

A161629 E.g.f. satisfies: A(x) = exp( x*Catalan(x*A(x)) ), where Catalan(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 3, 25, 349, 6821, 171421, 5265625, 191160201, 8007548617, 380157603481, 20171371753061, 1182973489103869, 75984447924612397, 5305029326492409333, 400014338565211619761, 32396515980658185762961
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 25*x^3/3! + 349*x^4/4! + 6821*x^5/5! +...
log(A(x))/x = 1 + x*A(x) + 2*x^2*A(x)^2 + 5*x^3*A(x)^3 + 14*x^4*A(x)^4 +...+ A000108(n)*x^n*A(x)^n +...
log(A(x))/x = 1 + x + 6*x^2/2! + 63*x^3/3! + 988*x^4/4! + 20725*x^5/5! +...+ A213644(n)*x^n/n! +...
log(A(x)) = x + 2*x^2/2! + 18*x^3/3! + 252*x^4/4! + 4940*x^5/5! +...+ A213643(n)*x^n/n! +...
Ordinary Generating Function:
O.g.f.: 1 + x + 3*x^2 + 25*x^3 + 349*x^4 + 6821*x^5 + 171421*x^6 +...
O.g.f.: 1 + x/(1-x) + 2*x^2/(1-2*x)^3 + 6*2!*x^3/(1-3*x)^5 + 20*3!*x^4/(1-4*x)^7 + 70*4!*x^5/(1-5*x)^9 + 252*5!*x^6/(1-6*x)^11 +...+ (2*n-2)!/(n-1)!*x^n/(1-n*x)^(2*n-1) +...
		

Crossrefs

Cf. A213643 (log), A214689, A000108.

Programs

  • Mathematica
    Flatten[{1,Table[Sum[n!/k!*(n-k+1)^(k-1)*Binomial[2*n-k, n-k]*k/(2*n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 26 2014 *)
  • PARI
    {a(n,m=1)=if(n==0,1,sum(k=0,n,n!/k!*m*(m+n-k)^(k-1)*binomial(2*n-k,n-k)*k/(2*n-k)))}
    
  • PARI
    {a(n,m=1)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp((1-sqrt(1-4*x*A))/(2*A)));n!*polcoeff(A^m,n)}
    
  • PARI
    /* O.g.f.: */
    {a(n)=polcoeff(1+sum(m=1, n, (2*m-2)!/(m-1)!*x^m/(1-m*x+x*O(x^n))^(2*m-1)), n)}

Formula

E.g.f.: A(x) = exp(F(x)) where F(x) = x + F(x)^2*exp(F(x)) is the e.g.f. of A213643.
E.g.f.: A(x) = Sum_{n>=0} a(n)*x^n/n!, where
a(n) = Sum_{k=0..n} n! * (n-k+1)^(k-1)/k! * C(2*n-k,n-k)*k/(2*n-k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
a(n,m) = Sum_{k=0..n} n! * m*(n-k+m)^(k-1)/k! * C(2*n-k,n-k)*k/(2*n-k).
...
O.g.f.: A(x) = 1 + Sum_{n>=1} (2*n-2)!/(n-1)! * x^n/(1 - n*x)^(2*n-1).
a(n) ~ n^(n-1) * sqrt((r*s^3*(1-6*r*s+8*r^2*s^2)) / (1 - (-2+8*r+r^2)*s + 4*r*(-4+4*r+r^2)*s^2 + 4*r^2*(8+r)*s^3)) / (exp(n) * r^n), where s = 1.370489293947401403417767032... is the root of the equation log(s)*(1-s*log(s)) + 2*(1+s) = (1+2*s) * sqrt((1+s)/s), and r = log(s)*(1-s*log(s)) = 0.179036084709909351719214... - Vaclav Kotesovec, Feb 26 2014

A143136 E.g.f. satisfies: A(x) = x + sinh( A(x) )^2.

Original entry on oeis.org

1, 2, 12, 128, 1920, 36992, 870912, 24232448, 777999360, 28309164032, 1151292628992, 51750540443648, 2547747292446720, 136336755956252672, 7879446478581399552, 489119124160488931328, 32456290094449950720000
Offset: 1

Views

Author

Paul D. Hanna, Jul 27 2008

Keywords

Comments

Radius of convergence is r = log(sqrt(2)+1)/2 - (sqrt(2)-1)/2 = 0.2335800...,
where A(r) = log(1+sqrt(2))/2 = arcsinh(1)/2 = 0.44068679...

Examples

			A(x) = x + 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 1920*x^5/5! + ...
sinh(A(x)) = G(x) is the e.g.f. of A143137:
G(x) = x + 2*x^2/2! + 13*x^3/3! + 140*x^4/4! + 2101*x^5/5! + ...
Related expansions:
A(x) = x + sinh(x)^2 + d/dx sinh(x)^4/2! + d^2/dx^2 sinh(x)^6/3! + d^3/dx^3 sinh(x)^8/4! + ...
log(A(x)/x) = sinh(x)^2/x + d/dx (sinh(x)^4/x)/2! + d^2/dx^2 (sinh(x)^6/x)/3! + d^3/dx^3 (sinh(x)^8/x)/4! +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - Sinh[x]^2,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(x-sinh(x+x*O(x^n))^2),n)}
    
  • PARI
    {a(n)=local(A=x);for(i=0,n,A=x + sinh(A)^2);n!*polcoeff(A,n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, sinh(x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, sinh(x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))

Formula

E.g.f.: A(x) = Series_Reversion( x - sinh(x)^2 ).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) sinh(x)^(2*n)/n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (sinh(x)^(2*n)/x)/n! ).
E.g.f. derivative: A'(x) = 1/(1 - sinh(2*A(x))).
a(n) ~ 2^(n-5/4) * n^(n-1) / (exp(n) * (1-sqrt(2)+log(1+sqrt(2)))^(n-1/2)). - Vaclav Kotesovec, Jan 08 2014

A214688 E.g.f. equals the series reversion of x - x^2*exp(2*x).

Original entry on oeis.org

1, 2, 24, 408, 9760, 299520, 11223744, 496802432, 25365482496, 1467480983040, 94873742909440, 6778628603670528, 530412734126346240, 45110083291805622272, 4143219058165730672640, 408715543077297795072000, 43097868598208296895512576, 4837629293480336802779234304
Offset: 1

Views

Author

Paul D. Hanna, Aug 01 2012

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 24*x^3/3! + 408*x^4/4! + 9760*x^5/5! + ...
where A(x - x^2*exp(2*x)) = x and A(x) = x + A(x)^2*exp(2*A(x)).
The e.g.f. satisfies:
(3) A(x) = x + x^2*exp(2*A(x)) + 2*x^3*exp(4*A(x)) + 5*x^4*exp(6*A(x)) + 14*x^5*exp(8*A(x)) + 42*x^6*exp(10*A(x)) + ...
(4) log(A(x)/x) = x*exp(2*A(x)) + 3*x^2*exp(4*A(x))/2 + 10*x^3*exp(6*A(x))/3 + 35*x^4*exp(8*A(x))/4 + 126*x^5*exp(10*A(x))/5 + ...
(5) A(x) = x + x^2*exp(2*x) + d/dx x^4*exp(4*x)/2! + d^2/dx^2 x^6*exp(6*x)/3! + d^3/dx^3 x^8*exp(8*x)/4! + ...
(6) log(A(x)/x) = x*exp(2*x) + d/dx x^3*exp(4*x)/2! + d^2/dx^2 x^5*exp(6*x)/3! + d^3/dx^3 x^7*exp(8*x)/4! + ...
Related expansions:
A(x) = x*Catalan(x*G(x)) where G(x) = exp(2*A(x)):
exp(A(x)) = 1 + x + 3*x^2/2! + 31*x^3/3! + 529*x^4/4! + 12601*x^5/5! + 385891*x^6/6! + ...
exp(2*A(x)) = 1 + 2*x + 8*x^2/2! + 80*x^3/3! + 1360*x^4/4! + 32352*x^5/5! + 989824*x^6/6! + ..., which is the e.g.f. of A214689.
A(x)^2 = 2*x^2/2! + 12*x^3/3! + 216*x^4/4! + 5040*x^5/5! + 153120*x^6/6! + ...
Ordinary Generating Function:
O.g.f.: x + 2*x^2 + 24*x^3 + 408*x^4 + 9760*x^5 + 299520*x^6 + ...
O.g.f.: x + 2*x^2/(1-2*x)^3 + 6*2!*x^3/(1-4*x)^5 + 20*3!*x^4/(1-6*x)^7 + 70*4!*x^5/(1-8*x)^9 + 252*5!*x^6/(1-10*x)^11 + ... + (2*n)!/n!*x^(n+1)/(1-2*n*x)^(2*n+1) + ...
		

Crossrefs

Programs

  • Magma
    A214688:= func< n | n eq 1 select 1 else (&+[Binomial(n-1,k)*Binomial(n+k-1,k)*Factorial(k)*(2*k)^(n-k-1): k in [1..n-1]]) >;
    [A214688(n): n in [1..30]]; // G. C. Greubel, Mar 07 2024
    
  • Mathematica
    Flatten[{1,Table[Sum[(2*k)^(n-k-1)/(n-k-1)!*(n+k-1)!/k!,{k,1,n-1}],{n,2,20}]}] (* Vaclav Kotesovec, Jul 13 2013 *)
  • PARI
    {a(n)=sum(k=0, n-1, (2*k)^(n-k-1)/(n-k-1)! * (n+k-1)!/k! )}
    
  • PARI
    {a(n)=n!*polcoeff(serreverse(x-x^2*exp(2*x+x*O(x^n))), n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, exp(2*m*x+x*O(x^n))*x^(2*m)/m!)); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, exp(2*m*x+x*O(x^n))*x^(2*m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    
  • PARI
    /* From o.g.f.: */
    {a(n)=polcoeff(sum(m=0, n, (2*m)!/m!*x^(m+1)/(1-2*m*x+x*O(x^n))^(2*m+1)), n)}
    
  • SageMath
    def A214688(n): return int(n==1)+sum(binomial(n-1,k)*binomial(n+k-1,k)*factorial(k)*(2*k)^(n-k-1) for k in range(1,n))
    [A214688(n) for n in range(1,30)] # G. C. Greubel, Mar 07 2024

Formula

a(n) = Sum_{k=0..n-1} ( (n+k-1)! * (2*k)^(n-k-1) )/(k! * (n-k-1)!).
O.g.f.: Sum_{n>=0} (2*n)!/n! * x^(n+1) / (1 - 2*n*x)^(2*n+1).
E.g.f. satisfies:
(1) A(x) = x + A(x)^2*exp(2*A(x)).
(2) A(x) = x*Catalan( x*exp(2*A(x)) ) where Catalan(x) = (1-sqrt(1-4*x))/(2*x).
(3) A(x) = x*Sum_{n>=0} binomial(2*n+1,n)/(2*n+1) * x^n * exp(2*n*A(x)).
(4) A(x) = x*exp( Sum_{n>=1} binomial(2*n-1,n) * x^n * exp(2*n*A(x)) / n ).
(5) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n) * exp(2*n*x) / n!.
(6) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * exp(2*n*x) / n! ).
(7) A(x) = log(G(x))/2 where G(x) = exp(2*x*Catalan(x*G(x))) is the e.g.f. of A214689, and Catalan(x) = (1-sqrt(1-4*x))/(2*x).
Limit_{n->oo} (a(n)/n!)^(1/n) = (2*r*(1+r))/(1-r) = 6.801725926701655517492664481..., where r = 0.670589533381613711... is the root of the equation (1-r^2)/(2*r^2) = exp((r-1)/r). - Vaclav Kotesovec, Jul 13 2013
a(n) ~ (1-r) * n^(n-1) * (2*r*(1+r)/(1-r))^n / (2*sqrt(r*(1+2*r-r^2)) * exp(n)). - Vaclav Kotesovec, Dec 28 2013

Extensions

Name changed and entry revised by Paul D. Hanna, Jul 13 2013

A215003 E.g.f. satisfies: A(x) = x + A(x)^2*exp(A(x))/2.

Original entry on oeis.org

1, 1, 6, 51, 610, 9360, 175371, 3881269, 99083916, 2866173795, 92650139560, 3309877247886, 129495296417565, 5506601964331741, 252882022593123210, 12473008516763238375, 657621285983402967766, 36908182475893682882532, 2196924777991866630353571
Offset: 1

Views

Author

Paul D. Hanna, Jul 30 2012

Keywords

Examples

			E.g.f.: A(x) = x + x^2/2! + 6*x^3/3! + 51*x^4/4! + 610*x^5/5! + 9360*x^6/6! +...
where A(x - x^2*exp(x)/2) = x and A(x) = x + A(x)^2*exp(A(x))/2.
Related expansions:
A(x)^2 = 2*x^2/2! + 6*x^3/3! + 54*x^4/4! + 630*x^5/5! + 9570*x^6/6! +...
exp(A(x)) = 1 + x + 2*x^2/2! + 10*x^3/3! + 85*x^4/4! + 1011*x^5/5! + 15466*x^6/6! + 289213*x^7/7! +...
A(x) = x + exp(x)*x^2/2 + d/dx exp(2*x)*x^4/2!/4 + d^2/dx^2 exp(3*x)*x^6/3!/8 + d^3/dx^3 exp(4*x)*x^8/4!/16 +...
log(A(x)/x) = exp(x)*x/2 + d/dx exp(2*x)*x^3/2!/4 + d^2/dx^2 exp(3*x)*x^5/3!/8 + d^3/dx^3 exp(4*x)*x^7/4!/16 +...
Ordinary Generating Function:
O.g.f.: x + x^2 + 6*x^3 + 51*x^4 + 610*x^5 + 9360*x^6 + 175371*x^7 +...
O.g.f.: x + 2*x^2/(1-x)^3/2 + 6*2!*x^3/(1-2*x)^5/4 + 20*3!*x^4/(1-3*x)^7/8 + 70*4!*x^5/(1-4*x)^9/16 + 252*5!*x^6/(1-5*x)^11/32 +...+ (2*n)!/n!*x^(n+1)/(1-n*x)^(2*n+1)/2^n +...
		

Crossrefs

Cf. A213643.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - x^2*E^x/2, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Dec 28 2013 *)
  • PARI
    {a(n)=sum(k=0, n-1, k^(n-k-1)/(n-k-1)! * (n+k-1)!/k!/2^k )}
    
  • PARI
    {a(n)=n!*polcoeff(serreverse(x-x^2*exp(x+x*O(x^n))/2), n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, exp(m*x+x*O(x^n))/2^m*x^(2*m)/m!)); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, exp(m*x+x*O(x^n))/2^m*x^(2*m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    
  • PARI
    /* O.g.f.: */
    {a(n)=polcoeff(sum(m=0, n, (2*m)!/m!/2^m*x^(m+1)/(1-m*x+x*O(x^n))^(2*m+1)), n)}

Formula

E.g.f.: Series_Reversion(x - x^2*exp(x)/2).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) exp(n*x)/2^n*x^(2*n) / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) exp(n*x)/2^n*x^(2*n-1) / n! ).
O.g.f.: Sum_{n>=0} (2*n)!/n!/2^n * x^(n+1) / (1 - n*x)^(2*n+1).
a(n) = Sum_{k=0..n-1} k^(n-k-1)/(n-k-1)! * (n+k-1)!/k!/2^k.
a(n) ~ r*sqrt((1+r)/(2+r*(4+r))) * n^(n-1) / (exp(n) * (r*(1+r)/(2+r))^n), where r = 0.4912251835444738797155054345... is the root of the equation r*(2+r)*exp(r) = 2. - Vaclav Kotesovec, Dec 28 2013

A380841 Array read by ascending antidiagonals: A(n,k) = n! * [x^n] 1/(1 - x*exp(x))^k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 21, 10, 3, 1, 0, 148, 66, 18, 4, 1, 0, 1305, 560, 141, 28, 5, 1, 0, 13806, 5770, 1380, 252, 40, 6, 1, 0, 170401, 69852, 16095, 2776, 405, 54, 7, 1, 0, 2403640, 970886, 217458, 35940, 4940, 606, 70, 8, 1, 0, 38143377, 15228880, 3335745, 533304, 70045, 8088, 861, 88, 9, 1
Offset: 0

Views

Author

Stefano Spezia, Feb 05 2025

Keywords

Examples

			Array begins as:
  1,    1,    1,     1,     1,     1,      1, ...
  0,    1,    2,     3,     4,     5,      6, ...
  0,    4,   10,    18,    28,    40,     54, ...
  0,   21,   66,   141,   252,   405,    606, ...
  0,  148,  560,  1380,  2776,  4940,   8088, ...
  0, 1305, 5770, 16095, 35940, 70045, 124350, ...
  ...
		

Crossrefs

Cf. A380843 (antidiagonal sums).
Columns k=0..4 give A000007, A006153, A377529, A377530, A379993.
Rows n=0..2 give A000012, A001477, A028552.
Main diagonal gives A380842.
A(n,n+1) gives A213643(n+1).

Programs

  • Mathematica
    A[n_,k_]:=n!SeriesCoefficient[1/(1-x*Exp[x])^k,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

A(n,k) = n! * Sum_{j=0..n} j^(n-j) * binomial(j+k-1,j)/(n-j)!. - Seiichi Manyama, Feb 06 2025

A215363 E.g.f. satisfies: A(x) = x + A(x)^2*cosh(A(x)).

Original entry on oeis.org

1, 2, 12, 132, 2040, 40350, 974400, 27805736, 915505920, 34160797530, 1424581678080, 65660547312492, 3314551571595264, 181866769617012662, 10777121944589844480, 685937077729538151120, 46668919680893409361920, 3380042082757952844150066, 259638732115410022642483200
Offset: 1

Views

Author

Paul D. Hanna, Aug 08 2012

Keywords

Examples

			E.g.f: A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2040*x^5/5! +...
Series expressions:
A(x) = x + cosh(x)*x^2 + d/dx cosh(x)^2*x^4/2! + d^2/dx^2 cosh(x)^3*x^6/3! + d^3/dx^3 cosh(x)^4*x^8/4! +...
log(A(x)/x) = cosh(x)*x + d/dx cosh(x)^2*x^3/2! + d^2/dx^2 cosh(x)^3*x^5/3! + d^3/dx^3 cosh(x)^4*x^7/4! +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - x^2*Cosh[x], {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 13 2014 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(x-x^2*cosh(x+x*O(x^n))), n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, cosh(x+x*O(x^n))^m*x^(2*m)/m!)); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, cosh(x+x*O(x^n))^m*x^(2*m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    
  • PARI
    {a(n)=n!*polcoeff(x/(1 - x*cosh(x+x*O(x^n)))^n/n, n)}

Formula

E.g.f. satisfies:
(1) Series_Reversion(x - x^2*cosh(x)).
(2) x + Sum_{n>=1} d^(n-1)/dx^(n-1) cosh(x)^n*x^(2*n) / n!.
(3) x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) cosh(x)^n*x^(2*n-1) / n! ).
a(n) = [x^n/n!] x/(1 - x*cosh(x))^n / n for n>0.
a(n) ~ s*sqrt(r/(6*r-2*s-r*s^2+s^3)) * n^(n-1) / (exp(n) * r^n), where s = 0.4227473416936597149... is the root of the equation s*(2*cosh(s) + s*sinh(s)) = 1, and r = s - s^2*cosh(s) = 0.22782318947143997934... - Vaclav Kotesovec, Jan 13 2014

A380842 Main diagonal of the array A380841.

Original entry on oeis.org

1, 1, 10, 141, 2776, 70045, 2157156, 78452521, 3290644288, 156380715801, 8304267312100, 487328231729581, 31318669850761008, 2187567259278425557, 165011952533314548676, 13368463736048341225425, 1157693100510102752463616, 106719312722496774534400177, 10433609651067618426072766020
Offset: 0

Views

Author

Stefano Spezia, Feb 05 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A380841[n_,k_]:=n!SeriesCoefficient[1/(1-x*Exp[x])^k,{x,0,n}]; Table[A380841[n,n],{n,0,18}]
  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(k+n-1, k)/(n-k)!); \\ Seiichi Manyama, Feb 06 2025

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(k+n-1,k)/(n-k)!. - Seiichi Manyama, Feb 06 2025
a(n) ~ r^(n + 1/2) * (1+r)^n * n^n / (sqrt(1 + 2*r - r^2) * exp(n) * (1-r)^n), where r = 0.760359234033398901446642379997259705906638343193092252797... is the root of the equation exp(1-r)*(1-r^2)^r = r^(2*r). - Vaclav Kotesovec, May 29 2025

A214363 E.g.f. satisfies: A(x) = x + A(x)^2 * cosh(A(x))^2 / 2.

Original entry on oeis.org

1, 1, 3, 27, 285, 3585, 56595, 1062131, 22868685, 557624745, 15204727395, 458112683787, 15113457195837, 541914801559313, 20984168325697395, 872681528769576675, 38793582477781496685, 1835683831177469267769, 92124361183712633639235, 4887330703061330205124475
Offset: 1

Views

Author

Paul D. Hanna, Jul 13 2012

Keywords

Comments

a(n) (mod 3) yields period 6 sequence: [0,0,0,0,0,2] starting at n=3.
a(6*n+2) == 2 (mod 3) for n>=1.

Examples

			E.g.f: A(x) = x + x^2/2! + 3*x^3/3! + 27*x^4/4! + 285*x^5/5! + 3585*x^6/6! +...
Related expansions:
A(x)^2 = 2*x^2/2! + 6*x^3/3! + 30*x^4/4! + 330*x^5/5! + 4410*x^6/6! + 67830*x^7/7! +...
A(x) = x + cosh(x)^2*x^2/2 + d/dx cosh(x)^4*x^4/(4*2!) + d^2/dx^2 cosh(x)^6*x^6/(8*3!) + d^3/dx^3 cosh(x)^8*x^8/(16*4!) +...
log(A(x)/x) = 1 + cosh(x)^2*x/2 + d/dx cosh(x)^4*x^3/(4*2!) + d^2/dx^2 cosh(x)^6*x^5/(8*3!) + d^3/dx^3 cosh(x)^8*x^7/(16*4!) +...
		

Crossrefs

Cf. A213643.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - (x^2*Cosh[x]^2)/2,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 12 2014 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(x-x^2/2*cosh(x+x*O(x^n))^2),n)}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, cosh(x+x*O(x^n))^(2*m)*x^(2*m)/2^m/m!)); n!*polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, cosh(x+x*O(x^n))^(2*m)*x^(2*m-1)/2^m/m!)+x*O(x^n))); n!*polcoeff(A, n)}

Formula

E.g.f. satisfies:
(1) A(x - x^2*cosh(x)^2/2) = x.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) cosh(x)^(2*n)*x^(2*n) / (2^n*n!).
(2) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) cosh(x)^(2*n)*x^(2*n-1) / (2^n*n!) ).
a(n) ~ n^(n-1) * sqrt(2/(1 + (1+2*s^2)*cosh(2*s) + 4*s*sinh(2*s))) / (exp(n) * r^(n-1/2)), where s = 0.568824148293580379787367453... is the root of the equation s*cosh(s)*(cosh(s) + s*sinh(s)) = 1, and r = s - s^2*(cosh(s))^2/2 = 0.3488028982491643456675... - Vaclav Kotesovec, Jan 12 2014

A227462 E.g.f. equals the series reversion of x - x^2*exp(x^2).

Original entry on oeis.org

1, 2, 12, 144, 2400, 50760, 1310400, 39984000, 1407490560, 56143130400, 2502730137600, 123302540148480, 6653043673436160, 390182090889951360, 24713127865269043200, 1681180295452142284800, 122252619549518954496000, 9463442426016057083404800, 776944497581062575154790400
Offset: 1

Views

Author

Paul D. Hanna, Jul 13 2013

Keywords

Comments

Limit n->infinity (a(n)/n!)^(1/n) = Limit n->infinity a(n+1)/a(n)/n = 4.6910715... = 2*(1+s^2)/(s*(1+2*s^2)), where s is defined below. - Vaclav Kotesovec, added Jul 28 2013, updated Jan 07 2014

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 144*x^4/4! + 2400*x^5/5! +...
where A(x) = x + A(x)^2*exp(A(x)^2).
The e.g.f. satisfies:
(3) A(x) = x + x^2*exp(A(x)^2) + 2*x^3*exp(2*A(x)^2) + 5*x^4*exp(3*A(x)^2) + 14*x^5*exp(4*A(x)^2) + 42*x^6*exp(5*A(x)^2) +...
(4) log(A(x)/x) = x*exp(A(x)^2) + 3*x^2*exp(2*A(x)^2)/2 + 10*x^3*exp(3*A(x)^2)/3 + 35*x^4*exp(4*A(x)^2)/4 + 126*x^5*exp(5*A(x)^2)/5 +...
(5) A(x) = x + x^2/2*exp(x^2) + d/dx x^4/4*exp(2*x^2)/2! + d^2/dx^2 x^6/8*exp(3*x^2)/3! + d^3/dx^3 x^8/16*exp(4*x^2)/4! +...
(6) log(A(x)/x) = x*exp(x^2)/2 + d/dx x*exp(2*x^2)/2! + d^2/dx^2 x^2*exp(3*x^2)/3! + d^3/dx^3 x^3*exp(4*x^2)/4! +...
		

Crossrefs

Programs

  • Mathematica
    Table[(n-1)!*SeriesCoefficient[(x/(x-x^2*E^(x^2)))^n,{x,0,n-1}],{n,1,20}] (* Vaclav Kotesovec, Jul 28 2013 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(x-x^2*exp(x^2 +x*O(x^n))), n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    /* E.g.f. A(x) = x*Catalan( x*exp(A(x)^2) ): */
    {a(n)=local(A=x); for(i=1,n,A=(1-sqrt(1-4*x*exp(A^2 +x^2*O(x^n)) ))/2*exp(-A^2 +x*O(x^n)) ); n!*polcoeff(A,n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^(2*m)*exp(x^2+x*O(x^n))^m/m!)); n!*polcoeff(A, n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(2*m-1)*exp(x^2+x*O(x^n))^m/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=1,25,print1(a(n),", "))

Formula

E.g.f. A(x) satisfies:
(1) A(x) = x + A(x)^2*exp(A(x)^2).
(2) A(x) = x*Catalan( x*exp(A(x)^2) ) where Catalan(x) = (1-sqrt(1-4*x))/(2*x).
(3) A(x) = x*Sum_{n>=0} binomial(2*n+1,n)/(2*n+1) * x^n * exp(n*A(x)^2).
(4) A(x) = x*exp( Sum_{n>=1} binomial(2*n-1,n) * x^n/n * exp(n*A(x)^2) ).
(5) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n) * exp(n*x^2) / n!.
(6) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * exp(n*x^2) / n! ).
a(n) ~ n^(n-1) * s * sqrt((1+2*s^2)/(2+10*s^2+4*s^4)) / (exp(n) * ((s*(1+2*s^2))/(2*(1+s^2)))^n), where s = 0.3788063540000847107637564... is the root of the equation 2*s*(1+s^2)*exp(s^2) = 1. - Vaclav Kotesovec, Jan 07 2014
Showing 1-10 of 10 results.