cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A200438 G.f. satisfies: A(x) = exp( Sum_{n>=1} A(-x^n)^2 * x^n/n ).

Original entry on oeis.org

1, 1, -1, -2, 5, 14, -40, -119, 351, 1083, -3291, -10424, 32562, 105066, -334666, -1094595, 3536043, 11686231, -38172425, -127199414, 419230644, 1406346735, -4669311299, -15750517780, 52616257231, 178312867791, -598779740235, -2037290707630, 6871904761413, 23461177498832
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2011

Keywords

Comments

Compare g.f. to the trivial identity: G(x) = exp(Sum_{n>=1} G(-x^n)*x^n/n) where G(x) = 1+x.
abs(a(n+1)/a(n)) tends to 3.576353722518567708610064857260994390208457341780918501933217195112489... . - Vaclav Kotesovec, Mar 24 2017

Examples

			G.f.: A(x) = 1 + x - x^2 - 2*x^3 + 5*x^4 + 14*x^5 - 40*x^6 - 119*x^7 +...
where
log(A(x)) = A(-x)^2*x + A(-x^2)^2*x^2/2 + A(-x^3)^2*x^3/3 + A(-x^4)^2*x^4/4 +...
The coefficients in A(-x)^2 begin:
[1,-2,-1,6,7,-42,-58,366,513,-3406,-4846,33310,48304,-339446,...]
and the g.f. may be expressed by the Euler product:
A(x) = 1/((1-x)^1*(1-x^2)^-2*(1-x^3)^-1*(1-x^4)^6*(1-x^5)^7*(1-x^6)^-42*(1-x^7)^-58*(1-x^8)^366*...).
		

Crossrefs

Cf. A200402.

Programs

  • Maple
    b:= proc(n) option remember; (-1)^n*add(a(i)*a(n-i), i=0..n) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*b(d-1), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 24 2017
  • Mathematica
    A200438List[n_] := Module[{A, x, i}, A = 1+x; For[i=1, i <= n, i++, A = Exp[Sum[(A^2 /. x -> -x^m)*x^m/m, {m, 1, n}] + x*O[x]^n // Normal]]; CoefficientList[A + O[x]^n, x]]; A200438List[30] (* Jean-François Alcover, Mar 24 2017, adapted from PARI *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A^2,x,-x^m)*x^m/m)+x*O(x^n)));polcoeff(A,n)}

Formula

Equals the Euler transformation of the coefficients in A(-x)^2, where A(x) is the g.f. of this sequence.

A363471 G.f. satisfies A(x) = exp( 3 * Sum_{k>=1} A(-x^k) * x^k/k ).

Original entry on oeis.org

1, 3, -3, -26, 48, 444, -920, -9126, 19587, 204214, -449496, -4841001, 10856283, 119585034, -271813440, -3044796399, 6991433415, 79341313335, -183641493481, -2105713558467, 4905239040894, 56722082044512, -132833292089826, -1546827734185557
Offset: 0

Views

Author

Seiichi Manyama, Jun 03 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(3*sum(k=1, i, subst(A, x, -x^k)*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = B(x)^3 where B(x) is the g.f. of A200402.
A(x) = Sum_{k>=0} a(k) * x^k = 1/Product_{k>=0} (1-x^(k+1))^(3 * (-1)^k * a(k)).
a(0) = 1; a(n) = (3/n) * Sum_{k=1..n} ( Sum_{d|k} d * (-1)^(d-1) * a(d-1) ) * a(n-k).
Showing 1-2 of 2 results.