cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A200402 G.f. satisfies: A(x) = exp( Sum_{n>=1} A(-x^n)^3 * x^n/n ).

Original entry on oeis.org

1, 1, -2, -5, 24, 81, -439, -1590, 9144, 34451, -206641, -799196, 4936378, 19442800, -122613798, -489411508, 3134773097, 12640278932, -81948641010, -333099985517, 2180523864984, 8920922434686, -58861487584914, -242105281357185, 1608002839956522, 6643707274089977, -44372373955131024
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2011

Keywords

Comments

Compare g.f. to the trivial identity: G(x) = exp(Sum_{n>=1} G(-x^n)*x^n/n) where G(x) = 1+x.

Examples

			G.f.: A(x) = 1 + x - 2*x^2 - 5*x^3 + 24*x^4 + 81*x^5 - 439*x^6 +...
where
log(A(x)) = A(-x)^3*x + A(-x^2)^3*x^2/2 + A(-x^3)^3*x^3/3 + A(-x^4)^3*x^4/4 +...
The coefficients in A(-x)^3 begin:
[1,-3,-3,26,48,-444,-920,9126,19587,-204214,-449496,4841001,...]
and the g.f. may be expressed by the Euler product:
A(x) = 1/((1-x)^1*(1-x^2)^-3*(1-x^3)^-3*(1-x^4)^26*(1-x^5)^48*(1-x^6)^-444*(1-x^7)^-920*(1-x^8)^9126*...).
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(a(i)*a(n-i), i=0..n) end:
    g:= proc(n) option remember; (-1)^n*add(b(i)*a(n-i), i=0..n) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*g(d-1), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 24 2017
  • Mathematica
    b[n_] := b[n] = Sum[a[i]*a[n-i], {i, 0, n}];
    g[n_] := g[n] = (-1)^n*Sum[b[i]*a[n-i], {i, 0, n}];
    a[n_] := a[n] = If[n==0, 1, Sum[DivisorSum[j, #*g[#-1]&]*a[n-j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 24 2017, after Alois P. Heinz *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A^3,x,-x^m)*x^m/m)+x*O(x^n)));polcoeff(A,n)}

Formula

Equals the Euler transformation of the coefficients in A(-x)^3, where A(x) is the g.f. of this sequence.

A363470 G.f. satisfies A(x) = exp( 2 * Sum_{k>=1} A(-x^k) * x^k/k ).

Original entry on oeis.org

1, 2, -1, -6, 7, 42, -58, -366, 513, 3406, -4846, -33310, 48304, 339446, -499133, -3565468, 5294439, 38312242, -57332347, -419177900, 631252549, 4654229300, -7045498256, -52310262192, 79531957334, 593986308994, -906439292326, -6803984285256
Offset: 0

Views

Author

Seiichi Manyama, Jun 03 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(2*sum(k=1, i, subst(A, x, -x^k)*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = B(x)^2 where B(x) is the g.f. of A200438.
A(x) = Sum_{k>=0} a(k) * x^k = 1/Product_{k>=0} (1-x^(k+1))^(2 * (-1)^k * a(k)).
a(0) = 1; a(n) = (2/n) * Sum_{k=1..n} ( Sum_{d|k} d * (-1)^(d-1) * a(d-1) ) * a(n-k).
Showing 1-2 of 2 results.