cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 60 results. Next

A201280 Decimal expansion of x satisfying x^2 + 1 = cot(x) and 0 < x < Pi.

Original entry on oeis.org

6, 2, 3, 8, 9, 9, 5, 6, 0, 5, 8, 0, 9, 0, 3, 4, 4, 3, 6, 3, 9, 9, 0, 3, 2, 9, 3, 9, 4, 6, 3, 2, 4, 4, 2, 6, 4, 4, 2, 7, 6, 1, 7, 2, 0, 3, 1, 5, 6, 6, 7, 3, 6, 5, 2, 8, 8, 4, 4, 3, 7, 9, 0, 4, 7, 1, 8, 2, 8, 0, 2, 1, 3, 1, 8, 5, 4, 3, 4, 2, 6, 6, 8, 5, 9, 8, 1, 6, 4, 7, 7, 3, 1, 9, 4, 3, 1, 2, 4
Offset: 0

Views

Author

Clark Kimberling, Nov 29 2011

Keywords

Comments

For many choices of a and c, there is exactly one x satisfying a*x^2 + c = cot(x) and 0 < x < Pi.
Guide to related sequences, with graphs included in Mathematica programs:
a.... c.... x
1.... 1.... A201280
1.... 2.... A201281
1.... 3.... A201282
1.... 4.... A201283
1.... 5.... A201284
1.... 6.... A201285
1.... 7.... A201286
1.... 8.... A201287
1.... 9.... A201288
1.... 10... A201289
1.... 0.... A201294
1... -1.... A201295
1... -2.... A201296
1... -3.... A201297
1... -4.... A201298
1... -5.... A201299
1... -6.... A201315
1... -7.... A201316
1... -8.... A201317
1... -9.... A201318
1.. -10.... A201319
2.... 0.... A201329
3.... 0.... A201330
4.... 0.... A201331
5.... 0.... A201332
6.... 0.... A201333
7.... 0.... A201334
8.... 0.... A201335
9.... 0.... A201336
10... 0.... A201337
2... -1.... A201320
3... -1.... A201321
4... -1.... A201322
5... -1.... A201323
6... -1.... A201324
7... -1.... A201325
8... -1.... A201326
9... -1.... A201327
10.. -1.... A201328
2.... 1.... A201290
2.... 3.... A201291
2... -3.... A201394
3.... 1.... A201292
3.... 2.... A201293
3... -2.... A201395
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A201280, take f(x,u,v) = u*x^2 - v - cot(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			0.62389956058090344363990329394632442...
		

Crossrefs

Cf. A200614.

Programs

  • Mathematica
    (* Program 1: A201280 *)
    a = 1; c = 1;
    f[x_] := a*x^2 + c; g[x_] := Cot[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .62, .63}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201280 *)
    (* Program 2: implicit surface of u*x^2-v=cot(x) *)
    f[{x_, u_, v_}] := u*x^2 - v - Cot[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .001, Pi}]}, {u, 0, 5, .1}, {v, 0, 5, .1}];
    ListPlot3D[Flatten[t, 1]]  (* for A201280 *)

Extensions

Edited and a(90) onwards corrected by Georg Fischer, Aug 03 2021

A201397 Decimal expansion of x satisfying x^2 + 2 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 2, 9, 5, 4, 5, 9, 6, 4, 6, 4, 1, 5, 4, 7, 8, 7, 6, 8, 6, 2, 9, 9, 1, 3, 2, 7, 0, 7, 1, 8, 6, 4, 1, 5, 8, 9, 7, 6, 7, 2, 7, 4, 8, 2, 7, 0, 6, 8, 7, 1, 3, 1, 6, 1, 6, 0, 5, 1, 8, 1, 4, 3, 0, 2, 1, 7, 4, 9, 5, 1, 2, 6, 5, 9, 9, 3, 0, 9, 5, 5, 9, 7, 8, 6, 7, 4, 3, 9, 4, 7, 1, 9, 8, 8, 4, 7, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

For many choices of a and c, there are exactly two values of x satisfying a*x^2 + c = sec(x) and 0 < x < Pi. Guide to related sequences, with graphs included in Mathematica programs:
a.... c.... x
1.... 1.... A196816
1.... 2.... A201397
1.... 3.... A201398
1.... 4.... A201399
1.... 5.... A201400
1.... 6.... A201401
1.... 7.... A201402
1.... 8.... A201403
1.... 9.... A201404
1.... 10... A201405
2.... 0.... A201406, A201407
3.... 0.... A201408, A201409
4.... 0.... A201410, A201411
5.... 0.... A201412, A201413
6.... 0.... A201414, A201415
7.... 0.... A201416, A201417
8.... 0.... A201418, A201419
9.... 0.... A201420, A201421
10... 0.... A201422, A201423
3... -1.... A201515, A201516
4... -1.... A201517, A201518
5... -1.... A201519, A201520
6... -1.... A201521, A201522
7... -1.... A201523, A201524
8... -1.... A201525, A201526
9... -1.... A201527, A201528
10.. -1.... A201529, A201530
2.... 3.... A201531
3.... 2.... A200619
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A201397, take f(x,u,v) = u*x^2 + v = sec(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			1.2954596464154787686299132707186415897672...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A201397 *)
    a = 1; c = 2;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201397 *)
    (* Program 2: implicit surface of u*x^2+v=sec(x) *)
    Remove["Global`*"];
    f[{x_, u_, v_}] := u*x^2 + v - Sec[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .1, 1}]}, {v, 0, 1}, {u, 2 + v, 10}];
    ListPlot3D[Flatten[t, 1]]  (* for A201397 *)

A200616 Decimal expansion of the lesser of two values of x satisfying 4*x^2 - 1 = tan(x) and 0 < x < Pi/2.

Original entry on oeis.org

6, 6, 9, 1, 0, 2, 9, 7, 2, 0, 2, 3, 5, 7, 5, 4, 1, 6, 0, 7, 6, 6, 0, 1, 2, 5, 0, 1, 8, 8, 4, 5, 6, 9, 8, 2, 4, 5, 6, 2, 2, 7, 9, 4, 4, 3, 8, 7, 1, 8, 5, 6, 4, 3, 3, 0, 1, 1, 5, 8, 3, 0, 0, 2, 1, 7, 3, 9, 4, 9, 8, 4, 0, 8, 4, 2, 6, 3, 7, 2, 4, 5, 6, 0, 2, 7, 9, 3, 9, 0, 4, 3, 4, 2, 2, 9, 3, 7, 4
Offset: 0

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			lesser:  0.839582259045302941513764008863804986308...
greater: 1.350956593976519397744696294368524715373...
		

Crossrefs

Cf. A200614.

Programs

  • Mathematica
    a = 4; c = 1;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200616 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200617 *)

A200617 Decimal expansion of the greater of two values of x satisfying 4*x^2 - 1 = tan(x) and 0 < x < Pi/2.

Original entry on oeis.org

1, 4, 3, 3, 0, 6, 8, 7, 8, 5, 5, 8, 4, 9, 1, 6, 8, 7, 5, 2, 2, 6, 7, 8, 2, 7, 1, 7, 5, 9, 6, 7, 2, 8, 7, 7, 0, 2, 2, 0, 9, 2, 4, 0, 2, 6, 8, 4, 7, 5, 6, 2, 1, 5, 0, 8, 5, 0, 2, 2, 7, 6, 3, 4, 2, 5, 3, 1, 1, 6, 8, 1, 0, 4, 7, 6, 9, 2, 5, 0, 7, 4, 5, 8, 6, 3, 1, 9, 1, 6, 5, 0, 3, 1, 8, 1, 0, 5, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			lesser:  0.839582259045302941513764008863804986308...
greater: 1.350956593976519397744696294368524715373...
		

Crossrefs

Programs

  • Mathematica
    a = 4; c = 1;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200616 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200617 *)

A200620 Decimal expansion of the lesser of two values of x satisfying 5*x^2 - 1 = tan(x) and 0 < x < Pi/2.

Original entry on oeis.org

5, 7, 3, 8, 2, 5, 6, 1, 4, 2, 2, 0, 7, 0, 7, 5, 1, 9, 4, 7, 0, 6, 9, 9, 3, 0, 7, 3, 9, 5, 0, 2, 8, 9, 7, 2, 0, 4, 0, 0, 1, 2, 6, 2, 0, 5, 6, 7, 5, 7, 0, 8, 3, 3, 8, 2, 7, 1, 3, 0, 1, 2, 7, 4, 1, 8, 7, 9, 3, 4, 4, 0, 9, 7, 0, 1, 7, 1, 2, 2, 0, 9, 2, 8, 2, 1, 3, 3, 5, 3, 7, 0, 0, 6, 1, 5, 4, 5, 0
Offset: 0

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			lesser:  0.5738256142207075194706993073950289720400...
greater: 1.469002719513610613223362597583632411278000...
		

Crossrefs

Programs

  • Mathematica
    a = 5; c = 1;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200620 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200621 *)

A200621 Decimal expansion of the greater of two values of x satisfying 5*x^2 - 1 = tan(x) and 0 < x < Pi/2.

Original entry on oeis.org

1, 4, 6, 9, 0, 0, 2, 7, 1, 9, 5, 1, 3, 6, 1, 0, 6, 1, 3, 2, 2, 3, 3, 6, 2, 5, 9, 7, 5, 8, 3, 6, 3, 2, 4, 1, 1, 2, 7, 8, 0, 0, 0, 3, 4, 6, 1, 5, 3, 5, 7, 4, 6, 4, 8, 5, 8, 8, 7, 7, 3, 5, 8, 6, 2, 2, 8, 1, 7, 2, 0, 1, 8, 4, 8, 3, 0, 6, 1, 0, 4, 5, 6, 4, 2, 4, 9, 0, 1, 9, 0, 6, 6, 9, 7, 6, 7, 0, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			lesser:  0.5738256142207075194706993073950289720400...
greater: 1.469002719513610613223362597583632411278000...
		

Crossrefs

Cf. A200614.

Programs

  • Mathematica
    a = 5; c = 1;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200620 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200621 *)

A200622 Decimal expansion of the lesser of two values of x satisfying 5*x^2 - 2 = tan(x) and 0 < x < Pi/2.

Original entry on oeis.org

7, 7, 0, 8, 9, 6, 8, 8, 3, 9, 1, 4, 2, 7, 7, 1, 8, 2, 8, 3, 7, 2, 6, 4, 9, 2, 7, 3, 5, 8, 7, 0, 6, 3, 2, 1, 8, 6, 8, 7, 5, 4, 8, 4, 3, 3, 6, 1, 9, 2, 8, 8, 8, 3, 4, 1, 1, 0, 9, 3, 2, 0, 8, 9, 6, 3, 2, 6, 1, 7, 9, 1, 3, 9, 9, 0, 3, 8, 2, 1, 8, 6, 6, 4, 7, 7, 7, 3, 0, 9, 1, 9, 7, 1, 1, 5, 9, 8, 7
Offset: 0

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			lesser:  0.770896883914277182837264927358706321868754...
greater: 1.454799213519995526370784300798944589012608...
		

Crossrefs

Cf. A200614.

Programs

  • Mathematica
    a = 5; c = 2;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200622 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200623 *)

A200623 Decimal expansion of the greater of two values of x satisfying 5*x^2 - 2 = tan(x) and 0 < x < Pi/2.

Original entry on oeis.org

1, 4, 5, 4, 7, 9, 9, 2, 1, 3, 5, 1, 9, 9, 9, 5, 5, 2, 6, 3, 7, 0, 7, 8, 4, 3, 0, 0, 7, 9, 8, 9, 4, 4, 5, 8, 9, 0, 1, 2, 6, 0, 8, 7, 1, 2, 0, 1, 7, 0, 7, 4, 3, 1, 5, 0, 0, 2, 1, 9, 3, 2, 6, 9, 3, 9, 2, 3, 5, 3, 2, 2, 1, 5, 8, 0, 0, 0, 6, 1, 6, 9, 5, 4, 5, 8, 6, 7, 0, 2, 0, 8, 8, 7, 6, 7, 1, 9, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			lesser:  0.770896883914277182837264927358706321868754...
greater: 1.4547992135199955263707843007989445890126087...
		

Crossrefs

Cf. A200614.

Programs

  • Mathematica
    a = 5; c = 2;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
    RealDigits[r]    (* A200622 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200623 *)

A200624 Decimal expansion of the lesser of two values of x satisfying 5*x^2 - 3 = tan(x) and 0 < x < Pi/2.

Original entry on oeis.org

9, 3, 2, 5, 1, 7, 0, 5, 1, 8, 6, 4, 2, 2, 9, 4, 8, 1, 9, 4, 9, 8, 5, 7, 1, 8, 9, 8, 9, 3, 1, 3, 9, 9, 8, 9, 7, 6, 4, 9, 1, 7, 3, 6, 7, 7, 6, 1, 8, 0, 6, 4, 5, 2, 3, 9, 0, 8, 8, 9, 6, 8, 9, 1, 4, 2, 8, 6, 3, 2, 4, 8, 6, 6, 9, 2, 4, 5, 1, 5, 4, 5, 3, 2, 2, 7, 7, 0, 3, 8, 6, 5, 7, 0, 6, 4, 3, 7, 6
Offset: 0

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			lesser:  0.9325170518642294819498571898931399897649173...
greater: 1.43443679853106488271886435135433585034396681...
		

Crossrefs

Cf. A200614.

Programs

  • Mathematica
    a = 5; c = 3;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .93, .94}, WorkingPrecision -> 110]
    RealDigits[r]    (* A200624 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200625 *)

A200625 Decimal expansion of the greater of two values of x satisfying 5*x^2 - 3 = tan(x) and 0 < x < Pi/2.

Original entry on oeis.org

1, 4, 3, 4, 4, 3, 6, 7, 9, 8, 5, 3, 1, 0, 6, 4, 8, 8, 2, 7, 1, 8, 8, 6, 4, 3, 5, 1, 3, 5, 4, 3, 3, 5, 8, 5, 0, 3, 4, 3, 9, 6, 6, 8, 1, 5, 1, 2, 5, 3, 6, 8, 1, 7, 1, 8, 4, 8, 5, 3, 0, 2, 3, 6, 4, 7, 1, 1, 6, 6, 0, 5, 2, 5, 8, 3, 9, 9, 2, 6, 4, 1, 9, 5, 5, 1, 8, 5, 9, 7, 6, 8, 1, 3, 6, 1, 6, 6, 6
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			lesser:  0.9325170518642294819498571898931399897...
greater: 1.4344367985310648827188643513543358503...
		

Crossrefs

Cf. A200614.

Programs

  • Mathematica
    a = 5; c = 3;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .93, .94}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200624 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200625 *)
Showing 1-10 of 60 results. Next