cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200660 Sum of the number of arcs describing the set partitions of {1,2,...,n}.

Original entry on oeis.org

0, 1, 8, 49, 284, 1658, 9974, 62375, 406832, 2769493, 19668054, 145559632, 1121153604, 8974604065, 74553168520, 641808575961, 5718014325296, 52653303354906, 500515404889978, 4905937052293759, 49530189989912312, 514541524981377909, 5494885265473192914
Offset: 1

Views

Author

Nantel Bergeron, Nov 20 2011

Keywords

Comments

Supercharacter theory of unipotent upper triangular matrices over a finite field F(2) is indexed by set partitions S(n) of {1,2,...,n} where a set partition P of {1,2,...,n} is a subset { (i,j) : 1 <= i < j <= n} such that (i,j) in P implies (i,k),(k,j) are not in P for all i < l < j.
One of the statistics used to compute the supercharacter table is the number of arcs in P (that is, the cardinality |P| of P).
The sequence we have is arcs(n) = Sum_{P in S(n)} |P|.

Crossrefs

Cf. A011971 (sequence is computed from Aitken's array b(n,k) arcs(n) = Sum_{k=1..n-1} k*b(n,k)).
Cf. A200580, A200673 (other statistics related to supercharacter table).
Cf. A367955.

Programs

  • Maple
    b:=proc(n,k) option remember;
      if n=1 and k=1 then RETURN(1) fi;
      if k=1 then RETURN(b(n-1,n-1)) fi;
      b(n,k-1)+b(n-1,k-1)
    end:
    arcs:=proc(n) local res,k;
      res:=0;
      for k to n-1 do res:=res+ k*b(n,k) od;
      res
    end:
    seq(arcs(n),n=1..34);
  • Mathematica
    b[n_, k_] := b[n, k] = Which[n == 1 && k == 1, 1, k == 1, b[n - 1, n - 1], True, b[n, k - 1] + b[n - 1, k - 1]];
    arcs[n_] := Module[{res = 0, k}, For[k = 1, k <= n-1, k++, res = res + k * b[n, k]]; res];
    Array[arcs, 34] (* Jean-François Alcover, Nov 25 2017, translated from Maple *)

Formula

a(n) = Sum_{k=1..n} Stirling2(n,k) * k * (n-k). - Ilya Gutkovskiy, Apr 06 2021
a(n) = Sum_{k=n..n*(n+1)/2} (k-n) * A367955(n,k). - Alois P. Heinz, Dec 11 2023