A200660 Sum of the number of arcs describing the set partitions of {1,2,...,n}.
0, 1, 8, 49, 284, 1658, 9974, 62375, 406832, 2769493, 19668054, 145559632, 1121153604, 8974604065, 74553168520, 641808575961, 5718014325296, 52653303354906, 500515404889978, 4905937052293759, 49530189989912312, 514541524981377909, 5494885265473192914
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..500
- M. Aguiar, C. Andre, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson, S. Hsiao, I. M. Isaacs, A. Jedwab, K. Johnson, G. Karaali, A. Lauve, T. Le, S. Lewis, H. Li, K. Magaard, E. Marberg, J-C. Novelli, A. Pang, F. Saliola, L. Tevlin, J-Y. Thibon, N. Thiem, V. Venkateswaran, C. R. Vinroot, N. Yan, and M. Zabrocki, Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras, arXiv:1009.4134 [math.CO], 2010-2011.
- C. André, Basic characters of the unitriangular group, Journal of Algebra, 175 (1995), 287-319.
Crossrefs
Programs
-
Maple
b:=proc(n,k) option remember; if n=1 and k=1 then RETURN(1) fi; if k=1 then RETURN(b(n-1,n-1)) fi; b(n,k-1)+b(n-1,k-1) end: arcs:=proc(n) local res,k; res:=0; for k to n-1 do res:=res+ k*b(n,k) od; res end: seq(arcs(n),n=1..34);
-
Mathematica
b[n_, k_] := b[n, k] = Which[n == 1 && k == 1, 1, k == 1, b[n - 1, n - 1], True, b[n, k - 1] + b[n - 1, k - 1]]; arcs[n_] := Module[{res = 0, k}, For[k = 1, k <= n-1, k++, res = res + k * b[n, k]]; res]; Array[arcs, 34] (* Jean-François Alcover, Nov 25 2017, translated from Maple *)
Formula
a(n) = Sum_{k=1..n} Stirling2(n,k) * k * (n-k). - Ilya Gutkovskiy, Apr 06 2021
a(n) = Sum_{k=n..n*(n+1)/2} (k-n) * A367955(n,k). - Alois P. Heinz, Dec 11 2023
Comments