A200718
G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x^2*A(x)^6).
Original entry on oeis.org
1, 1, 3, 14, 75, 433, 2636, 16668, 108399, 720431, 4871555, 33409042, 231817448, 1624503716, 11480658056, 81731416480, 585579734959, 4219179476875, 30552067317233, 222225174139730, 1622894404239115, 11894991079960721, 87472260252499560, 645183802300787356, 4771926560361458884
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 75*x^4 + 433*x^5 + 2636*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 34*x^3 + 187*x^4 + 1100*x^5 + 6784*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 194*x^3 + 1200*x^4 + 7674*x^5 + 50317*x^6 +...
A(x)^8 = 1 + 8*x + 52*x^2 + 336*x^3 + 2210*x^4 + 14776*x^5 + 100216*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x)^6 + x^3*A(x)^8.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^4)*x*A + (1 + 2^2*x*A^4 + x^2*A^8)*x^2*A^2/2 +
(1 + 3^2*x*A^4 + 3^2*x^2*A^8 + x^3*A^12)*x^3*A^3/3 +
(1 + 4^2*x*A^4 + 6^2*x^2*A^8 + 4^2*x^3*A^12 + x^4*A^16)*x^4*A^4/4 +
(1 + 5^2*x*A^4 + 10^2*x^2*A^8 + 10^2*x^3*A^12 + 5^2*x^4*A^16 + x^5*A^20)*x^5*A^5/5 + ...
The g.f. of A104545, G(x) = A(x/G(x)^2) where A(x) = G(x*A(x)^2), begins:
G(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 55*x^7 + 129*x^8 +...
Cf.
A104545,
A200716,
A200717,
A199876,
A199877,
A198951,
A198953,
A198957,
A192415,
A198888,
A036765.
-
a[n_] := Sum[Binomial[2*n + 2*k + 1, k]*Binomial[2*n + 2*k + 1, n - 2*k]/ (2*n + 2*k + 1), {k, 0, n/2}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jan 09 2018, after Vladimir Kruchinin *)
-
a(n):=sum((binomial(2*n+2*k+1,k)*binomial(2*n+2*k+1,n-2*k))/(2*n+2*k+1),k,0,(n)/2); /* Vladimir Kruchinin, Mar 11 2016 */
-
{a(n)=polcoeff(sqrt( (1/x)*serreverse( 2*x^5*(1+x)^2/(1 - 2*x^2*(1+x)^2 - sqrt(1 - 4*x^2*(1+x)^2+O(x^(n+6)))) ) ),n)}
-
{a(n)=local(p=1,q=4,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
-
{a(n)=local(p=1,q=4,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
-
{a(n)=local(p=1,q=4,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
A200719
G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x^2*A(x)^5).
Original entry on oeis.org
1, 1, 3, 13, 64, 340, 1903, 11053, 65993, 402527, 2497439, 15712220, 100001459, 642719263, 4165537744, 27193644061, 178654643151, 1180282875483, 7836312619243, 52259258911091, 349902441457427, 2351240866736891, 15851508780927739, 107187240225220684, 726784821098903319
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 64*x^4 + 340*x^5 + 1903*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 163*x^4 + 886*x^5 + 5039*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 765*x^4 + 4481*x^5 + 26920*x^6 +...
A(x)^7 = 1 + 7*x + 42*x^2 + 252*x^3 + 1533*x^4 + 9457*x^5 + 59101*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x)^5 + x^3*A(x)^7.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^3)*x*A + (1 + 2^2*x*A^3 + x^2*A^6)*x^2*A^2/2 +
(1 + 3^2*x*A^3 + 3^2*x^2*A^6 + x^3*A^9)*x^3*A^3/3 +
(1 + 4^2*x*A^3 + 6^2*x^2*A^6 + 4^2*x^3*A^9 + x^4*A^12)*x^4*A^4/4 +
(1 + 5^2*x*A^3 + 10^2*x^2*A^6 + 10^2*x^3*A^9 + 5^2*x^4*A^12 + x^5*A^15)*x^5*A^5/5 + ...
Cf.
A200716,
A200717,
A200718,
A200074,
A200075,
A199876,
A199874,
A199877,
A198951,
A198953,
A198957,
A192415,
A198888,
A036765,
A104545.
-
{a(n)=local(p=1,q=3,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
-
{a(n)=local(p=1,q=3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
-
{a(n)=local(p=1,q=3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
A200717
G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^2).
Original entry on oeis.org
1, 1, 4, 18, 93, 521, 3073, 18806, 118297, 760162, 4968480, 32928392, 220766739, 1494635330, 10203884795, 70167751762, 485574854049, 3379064343829, 23631314301088, 165998001901786, 1170706810318259, 8286253163771045, 58842370488310336, 419102145275264242, 2993221125640617827
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 18*x^3 + 93*x^4 + 521*x^5 + 3073*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 9*x^2 + 44*x^3 + 238*x^4 + 1372*x^5 + 8256*x^6 +...
A(x)^3 = 1 + 3*x + 15*x^2 + 79*x^3 + 447*x^4 + 2655*x^5 + 16324*x^6 +...
A(x)^5 = 1 + 5*x + 30*x^2 + 180*x^3 + 1110*x^4 + 7006*x^5 + 45075*x^6 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^2 + x^3*A(x)^5.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x/A)*x*A^2 + (1 + 2^2*x/A + x^2/A^2)*x^2*A^4/2 +
(1 + 3^2*x/A + 3^2*x^2/A^2 + x^3/A^3)*x^3*A^6/3 +
(1 + 4^2*x/A + 6^2*x^2/A^2 + 4^2*x^3/A^3 + x^4/A^4)*x^4*A^8/4 +
(1 + 5^2*x/A + 10^2*x^2/A^2 + 10^2*x^3/A^3 + 5^2*x^4/A^4 + x^5/A^5)*x^5*A^10/5 + ...
Cf.
A200716,
A200718,
A200719,
A200074,
A200075,
A215576,
A199876,
A199874,
A199877,
A198951,
A198953,
A198957,
A192415,
A198888,
A036765.
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF^3) * (1 + x^2*AGF^2) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
-
{a(n)=polcoeff((1/x)*serreverse( x*(1 + sqrt(1 - 4*x*(1+x^2)^2 +x*O(x^n))) / (2*(1+x^2)) ),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(p=2,q=-1,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
-
{a(n)=local(p=2,q=-1,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
-
{a(n)=local(p=2,q=-1,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
A200731
G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^6).
Original entry on oeis.org
1, 1, 4, 22, 139, 953, 6894, 51796, 400269, 3161262, 25403536, 207043048, 1707345547, 14219399626, 119431172630, 1010495472960, 8604568715969, 73683710894255, 634142349130800, 5482062214763436, 47582484748270453, 414503778412715065, 3622792181209018168, 31758958747482608912
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 139*x^4 + 953*x^5 + 6894*x^6 +...
where A(x) = (1 + x*A(x)^3)*(1 + x^2*A(x)^6).
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 609*x^4 + 4335*x^5 + 32197*x^6 +...
A(x)^6 = 1 + 6*x + 39*x^2 + 272*x^3 + 1989*x^4 + 15054*x^5 + 116955*x^6 +...
A(x)^9 = 1 + 9*x + 72*x^2 + 570*x^3 + 4545*x^4 + 36639*x^5 + 298662*x^6 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^6 + x^3*A(x)^9.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^3)*x*A^2 + (1 + 2^2*x*A^3 + x^2*A^6)*x^2*A^4/2 +
(1 + 3^2*x*A^3 + 3^2*x^2*A^6 + x^3*A^9)*x^3*A^6/3 +
(1 + 4^2*x*A^3 + 6^2*x^2*A^6 + 4^2*x^3*A^9 + x^4*A^12)*x^4*A^8/4 +
(1 + 5^2*x*A^3 + 10^2*x^2*A^6 + 10^2*x^3*A^9 + 5^2*x^4*A^12 + x^5*A^15)*x^5*A^10/5 + ...
which involves squares of binomial coefficients.
Cf.
A036765,
A200716,
A200717,
A200718,
A200719,
A200725,
A200074,
A200075,
A199874,
A199876,
A199877,
A198951,
A198953,
A198957,
A192415,
A198888. Cf.
A186241.
-
nmax = 23; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x A[x]^3)*(1 + x^2 A[x]^6) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
-
{a(n)=polcoeff( ((1/x)*serreverse(x/(1 + x + x^2 + x^3 +x*O(x^n))^3))^(1/3), n)}
-
{a(n)=polcoeff( (1 + x + x^2 + x^3 +x*O(x^n))^(3*n+1)/(3*n+1), n)}
-
{a(n)=local(p=2,q=3,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
-
{a(n)=local(p=2,q=3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
-
{a(n)=local(p=2,q=3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
A200725
G.f. A(x) satisfies A(x) = (1+x^2)*(1 + x*A(x)^3).
Original entry on oeis.org
1, 1, 4, 16, 76, 399, 2206, 12664, 74790, 451420, 2772313, 17267652, 108821293, 692609446, 4445642625, 28744599748, 187047449289, 1224027357216, 8050074481917, 53179900898596, 352726704965748, 2348036826102013, 15682048658695168, 105052549830928908, 705678173069959645
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 76*x^4 + 399*x^5 + 2206*x^6 +...
Related expansion:
A(x)^3 = 1 + 3*x + 15*x^2 + 73*x^3 + 384*x^4 + 2133*x^5 + 12280*x^6 +...
where a(3) = 1 + 15; a(4) = 3 + 73; a(5) = 15 + 384; a(6) = 73 + 2133; ...
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x/A^3)*x*A^2 + (1 + 2^2*x/A^3 + x^2/A^6)*x^2*A^4/2 +
(1 + 3^2*x/A^3 + 3^2*x^2/A^6 + x^3/A^9)*x^3*A^6/3 +
(1 + 4^2*x/A^3 + 6^2*x^2/A^6 + 4^2*x^3/A^9 + x^4/A^12)*x^4*A^8/4 +
(1 + 5^2*x/A^3 + 10^2*x^2/A^6 + 10^2*x^3/A^9 + 5^2*x^4/A^12 + x^5/A^15)*x^5*A^10/5 + ...
which involves the squares of the binomial coefficients C(n,k).
Cf.
A200716,
A200717,
A200718,
A200719,
A200074,
A200075,
A199874,
A199876,
A199877,
A198951,
A198953,
A198957,
A192415,
A198888,
A036765.
-
nmax=20;aa=ConstantArray[0,nmax]; aa[[1]]=1;Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x^2)*(1+x*AGF^3)-AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}];Flatten[{1,aa}] (* Vaclav Kotesovec, Aug 19 2013 *)
-
{a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
-
{a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
-
{a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
A211248
G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^4).
Original entry on oeis.org
1, 1, 4, 20, 114, 703, 4565, 30752, 212921, 1505916, 10833164, 79018804, 583062388, 4344431508, 32641910199, 247033970128, 1881402836376, 14408753414558, 110897147057354, 857307054338476, 6653979156676983, 51831065993122915, 405060413133136902, 3175019470333290488
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 20*x^3 + 114*x^4 + 703*x^5 + 4565*x^6 +...
where A( x*(1-x-x^3)^2/(1+x^2)^2 ) = (1+x^2)/(1-x-x^3).
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 85*x^3 + 522*x^4 + 3381*x^5 + 22735*x^6 +...
A(x)^4 = 1 + 4*x + 22*x^2 + 132*x^3 + 841*x^4 + 5588*x^5 + 38288*x^6 +...
A(x)^7 = 1 + 7*x + 49*x^2 + 343*x^3 + 2429*x^4 + 17430*x^5 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^4 + x^3*A(x)^7.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x))*x*A(x)^2 + (1 + 2^2*x*A(x) + x^2*A(x)^2)*x^2*A(x)^4/2 +
(1 + 3^2*x*A(x) + 3^2*x^2*A(x)^2 + x^3*A(x)^3)*x^3*A(x)^6/3 +
(1 + 4^2*x*A(x) + 6^2*x^2*A(x)^2 + 4^2*x^3*A(x)^3 + x^4*A(x)^4)*x^4*A(x)^8/4 +
(1 + 5^2*x*A(x) + 10^2*x^2*A(x)^2 + 10^2*x^3*A(x)^3 + 5^2*x^4*A(x)^4 + x^5*A(x)^5)*x^5*A(x)^10/5 +
(1 + 6^2*x*A(x) + 15^2*x^2*A(x)^2 + 20^2*x^3*A(x)^3 + 15^2*x^4*A(x)^4 + 6^2*x^5*A(x)^5 + x^6*A(x)^6)*x^6*A(x)^12/6 +...
more explicitly,
log(A(x)) = x + 7*x^2/2 + 49*x^3/3 + 359*x^4/4 + 2706*x^5/5 + 20767*x^6/6 +...
-
CoefficientList[Sqrt[1/x * InverseSeries[Series[x*(1 - x - x^3)^2/(1 + x^2)^2, {x, 0, 20}], x]], x] (* Vaclav Kotesovec, Nov 22 2017 *)
-
{a(n)=polcoeff(sqrt( (1/x)*serreverse( x*(1-x-x^3)^2/(1+x^2+x*O(x^n))^2 ) ), n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(p=2, q=1, A=1+x); for(i=1, n, A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n)); polcoeff(A, n)}
-
{a(n)=local(p=2, q=1, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0, m, binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
-
{a(n)=local(p=2, q=1, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
A211249
G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^5).
Original entry on oeis.org
1, 1, 4, 21, 126, 819, 5611, 39900, 291719, 2179181, 16560175, 127617168, 994951887, 7833555324, 62196300997, 497425570173, 4003607595960, 32404662671330, 263586896132154, 2153631763231319, 17666722629907960, 145449082369322208, 1201414340736684702
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 21*x^3 + 126*x^4 + 819*x^5 + 5611*x^6 +...
where A( x*(1-x-x^3)^2/(1+x^2)^2 ) = (1+x^2)/(1-x-x^3).
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 88*x^3 + 564*x^4 + 3828*x^5 + 27040*x^6 +...
A(x)^5 = 1 + 5*x + 30*x^2 + 195*x^3 + 1335*x^4 + 9486*x^5 + 69305*x^6 +...
A(x)^8 = 1 + 8*x + 60*x^2 + 448*x^3 + 3374*x^4 + 25704*x^5 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^5 + x^3*A(x)^8.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x)^2)*x*A(x)^2 +
(1 + 2^2*x*A(x)^2 + x^2*A(x)^4)*x^2*A(x)^4/2 +
(1 + 3^2*x*A(x)^2 + 3^2*x^2*A(x)^4 + x^3*A(x)^6)*x^3*A(x)^6/3 +
(1 + 4^2*x*A(x)^2 + 6^2*x^2*A(x)^4 + 4^2*x^3*A(x)^6 + x^4*A(x)^8)*x^4*A(x)^8/4 +
(1 + 5^2*x*A(x)^2 + 10^2*x^2*A(x)^4 + 10^2*x^3*A(x)^6 + 5^2*x^4*A(x)^8 + x^5*A(x)^10)*x^5*A(x)^10/5 +
(1 + 6^2*x*A(x)^2 + 15^2*x^2*A(x)^4 + 20^2*x^3*A(x)^6 + 15^2*x^4*A(x)^8 + 6^2*x^5*A(x)^10 + x^6*A(x)^12)*x^6*A(x)^12/6 +...
more explicitly,
log(A(x)) = x + 7*x^2/2 + 52*x^3/3 + 403*x^4/4 + 3211*x^5/5 + 26050*x^6/6 +...
-
CoefficientList[Sqrt[1/x * InverseSeries[Series[x*(1-2*x-x^2+x^4 + (1-x-x^2) * Sqrt[(1+x+x^2)*(1-3*x+x^2)])/2, {x, 0, 20}], x]], x] (* Vaclav Kotesovec, Nov 22 2017 *)
-
{a(n)=polcoeff(sqrt( (1/x)*serreverse( x*(1-2*x-x^2+x^4 + (1-x-x^2)*sqrt( (1+x+x^2)*(1-3*x+x^2) +x*O(x^n)))/2 ) ), n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(p=2, q=2, A=1+x); for(i=1, n, A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n)); polcoeff(A, n)}
-
{a(n)=local(p=2, q=2, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0, m, binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
-
{a(n)=local(p=2, q=2, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j,j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
Showing 1-7 of 7 results.
Comments