A202054 Smallest x such that Mordell's elliptic curve x^3-y^2=d (for positive d) has an integral point in the quadratic extension sqrt(A202057(n)).
22, 6100, 88, 129910, 2860, 1193740, 2545, 6815614
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((100 +2620*x +130596*x^2 -383556*x^3 +1239016*x^4 +4252504*x^5 -332600*x^6 -932360*x^7 +10356*x^8 +27564*x^9 -44*x^10 -116*x^11)/( (x^2+6*x+1)*(x^2-6*x+1)*(x^2+2*x-1)*(x^2-2*x-1)*(x^2+14*x-1)*(x^2 -14*x -1)))); // G. C. Greubel, Aug 22 2018
aa = {100, 2620, 154396, 240004, 37172564, 40080716, 7596048140, 7694839700, 1512067083076, 1515423087964, 299656796131324, 299770801505956}; a1 = aa[[1]]; a2 = aa[[2]]; a3 = aa[[3]]; a4 = aa[[4]]; a5 = aa[[5]]; a6 = aa[[6]]; a7 = aa[[7]]; a8 = aa[[8]]; a9 = aa[[9]]; a10 = aa[[10]]; a11 = aa[[11]]; a12 = aa[[12]]; Do[an = 238*a11 - 8127*a9 + 40868*a7 - 8127*a5 + 238*a3 - a1; a1 = a2; a2 = a3; a3 = a4; a4 = a5; a5 = a6; a6 = a7; a7 = a8; a8 = a9; a9 = a10; a10 = a11; a11 = a12; a12 = an; AppendTo[aa, an], {nn, 1, 88}]; aa LinearRecurrence[{0, 238, 0, -8127, 0, 40868, 0, -8127, 0, 238, 0, -1}, {100, 2620, 154396, 240004, 37172564, 40080716, 7596048140, 7694839700, 1512067083076, 1515423087964, 299656796131324, 299770801505956}, 50] (* G. C. Greubel, Aug 22 2018 *)
x='x+O('x^30); Vec((100 +2620*x +130596*x^2 -383556*x^3 +1239016*x^4 +4252504*x^5 -332600*x^6 -932360*x^7 +10356*x^8 +27564*x^9 -44*x^10 -116*x^11)/( (x^2+6*x+1)*(x^2-6*x+1)*(x^2+2*x-1)*(x^2-2*x-1)*(x^2+14*x-1)*(x^2 -14*x -1))) \\ G. C. Greubel, Aug 18 2018
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(216*(3-28*x+78*x^2+4*x^3-13*x^4)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)))); // G. C. Greubel, Aug 18 2018
uu = {648, -5400, 15336, -20088, 100872}; a1 = aa[[1]]; a2 = aa[[2]]; a3 = aa[[3]]; a4 = aa[[4]]; a5 = aa[[5]]; Do[an = a5 + 6 a4 - 6 a3 - a2 + a1; a1 = a2; a2 = a3; a3 = a4; a4 = a5; a5 = an; AppendTo[uu, an], {nn, 1, 20}]; uu
my(x='x+O('x^30)); Vec(216*(3-28*x+78*x^2+4*x^3-13*x^4)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2))) \\ G. C. Greubel, Aug 18 2018
Comments