cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201157 y-values in the solution to 5*x^2 - 20 = y^2.

Original entry on oeis.org

0, 5, 15, 40, 105, 275, 720, 1885, 4935, 12920, 33825, 88555, 231840, 606965, 1589055, 4160200, 10891545, 28514435, 74651760, 195440845, 511670775, 1339571480, 3507043665, 9181559515, 24037634880, 62931345125, 164756400495, 431337856360, 1129257168585
Offset: 1

Views

Author

Sture Sjöstedt, Nov 27 2011

Keywords

Comments

Except a(1), the same as A054888. - R. J. Mathar, Nov 28 2011

Examples

			15 is in the sequence because 15^2 = 5*7^2 - 20.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -1}, {0, 5}, 50]

Formula

a(n) = 3*a(n-1) - a(n-2), n>2.
G.f.: 5*x^2 / (x^2 - 3*x + 1). - Colin Barker, Apr 08 2013
a(n) = 5*Fibonacci(2*n-2) = Lucas(2*n-1) + Lucas(2*n-3) with Lucas(-1) = -1. - Bruno Berselli, Feb 15 2017
a(n) = Lucas(n)^2 - Lucas(n-2)^2. - Greg Dresden, Apr 15 2022

Extensions

More terms from Colin Barker, Apr 08 2013