cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A193580 Triangle read by rows: T(n,k) = number of ways to place k nonattacking kings on an n X n board.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 9, 16, 8, 1, 1, 16, 78, 140, 79, 1, 25, 228, 964, 1987, 1974, 978, 242, 27, 1, 1, 36, 520, 3920, 16834, 42368, 62266, 51504, 21792, 3600, 1, 49, 1020, 11860, 85275, 397014, 1220298, 2484382, 3324193, 2882737, 1601292, 569818, 129657, 18389, 1520, 64, 1
Offset: 0

Views

Author

Andrew Woods, Aug 27 2011

Keywords

Comments

Rows 2n and 2n-1 both contain 1 + n^2 entries. Cf. A008794.
Row n sums to A063443(n+1).
Number of walks of length n-1 on a graph in which each node represents a 11-avoiding n-bit binary sequence B and adjacency of B and B' is determined by B'&(B|(B<<1)|(B>>1))=0 and the total number of nonzero bits in the walk is k.
Row n gives the coefficients of the independence polynomial of the n X n king graph. - Eric W. Weisstein, Jun 20 2017

Examples

			The table begins with T(0,0):
  1;
  1,   1;
  1,   4;
  1,   9,  16,   8,   1;
  1,  16,  78, 140,  79;
  ...
T(4,3) = 140 because there are 140 ways to place 3 kings on a 4 X 4 chessboard so that no king threatens any other.
		

References

  • Norman Biggs, Algebraic Graph Theory, Cambridge University Press, New York, NY, second edition, 1993.

Crossrefs

Diagonal: A201513.
Cf. A179403, etc., for extension to toroidal boards.
Cf. A166540, etc., for extension into three dimensions.
Cf. A098487 for a clipped version.
Row n sums to A063443(n+1).

Formula

T(n, 0) = 1;
T(n, 1) = n^2;
T(2n-1, n^2-1) = n^3;
T(2n-1, n^2) = 1.

A201513 Number of ways to place n nonattacking kings on an n X n board.

Original entry on oeis.org

1, 1, 0, 8, 79, 1974, 62266, 2484382, 119138166, 6655170642, 423677826986, 30242576462856, 2390359529372724, 207127434998494421, 19516867860507198208, 1986288643031862123264, 217094567491104327256049, 25357029929230564723578520, 3151672341378566296926684684
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 02 2011

Keywords

Crossrefs

Formula

Asymptotics (Vaclav Kotesovec, Nov 29 2011): n^(2n)/n!*exp(-9/2).

Extensions

a(0)=1 prepended by Alois P. Heinz, May 11 2017

A201771 Number of ways to place 9 nonattacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 1, 3600, 2882737, 229095676, 6655170642, 103395053720, 1051588999820, 7878155295948, 46838274976147, 232322652402464, 995789500001315, 3784235129731708, 12999197522073908, 40969826999523768, 119876498636101786, 328726265508168780, 851369417500529061
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 04 2011

Keywords

Crossrefs

Formula

Explicit formula (Vaclav Kotesovec, after values computed by Andrew Woods, Dec 04 2011): n^18/362880 - n^16/1120 + n^15/840 + 1559*n^14/12096 - 119*n^13/360 - 7681*n^12/720 + 479*n^11/12 + 9383677*n^10/17280 - 195031*n^9/72 - 24176483*n^8/1440 + 4447749*n^7/40 + 5032857271*n^6/18144 - 495178813*n^5/180 - 2551293629*n^4/2520 + 1588223225*n^3/42 - 11469403819*n^2/315 - 664490248*n/3 + 405670140, n>=8.
G.f.: x^5*(54764*x^21 - 805588*x^20 + 6061268*x^19 - 31485512*x^18 + 117971558*x^17 - 312791986*x^16 + 620038858*x^15 - 1193322246*x^14 + 2685590901*x^13 - 4918483903*x^12 + 3824558880*x^11 + 5110355848*x^10 - 13987162841*x^9 + 5213745395*x^8 + 15789867458*x^7 - 14255103822*x^6 - 13342741937*x^5 - 2791816301*x^4 - 174938304*x^3 - 2814508*x^2 - 3581*x - 1)/(x-1)^19.

A220467 Number of ways to place 10 nonattacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1601292, 314949564, 17143061738, 423677826986, 6210264633994, 62831788827614, 481992723228798, 2982908737810114, 15548436178142582, 70420082692285198, 283631426534134042, 1034163399690010346, 3461457325296584554, 10754832937513676198
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 15 2012

Keywords

Crossrefs

Cf. A061995 (2 kings), A061996 (3 kings), A061997 (4 kings).
Cf. A061998 (5 kings), A172158 (6 kings), A194788 (7 kings).
Cf. A201369 (8 kings), A201771 (9 kings).
Column k=10 of A193580.

Programs

  • Mathematica
    Rest[CoefficientList[Series[-2*x^7*(97581*x^22 - 1758956*x^21 + 16320562*x^20 - 100734462*x^19 + 443795293*x^18 - 1471049082*x^17 + 3971393292*x^16 - 9304893422*x^15 + 17917931016*x^14 - 22612415810*x^13 + 6949925614*x^12 + 21430418050*x^11 + 9738010368*x^10 - 153051533038*x^9 + 256884162558*x^8 - 71451647970*x^7 - 265785285277*x^6 + 220345759446*x^5 + 251887022384*x^4 + 63841610284*x^3 + 5432696107*x^2 + 140661216*x + 800646)/(x-1)^21, {x, 0, 20}], x]]

Formula

a(n) = n^20/3628800 - n^18/8960 + n^17/6720 + 353*n^16/17280 - 53*n^15/1008 - 29467*n^14/13440 + 11867*n^13/1440 + 25901053*n^12/172800 - 107495*n^11/144 - 8467959*n^10/1280 + 122792641*n^9/2880 + 32499630031*n^8/181440 - 112903333*n^7/72 - 16042907329*n^6/6720 + 36445613711*n^5/1008 - 1784819159*n^4/300 - 9997453897*n^3/21 + 85979117831*n^2/140 + 13635070421*n/5 - 5609601346, for n>=9.
G.f.: -2*x^7*(97581*x^22 - 1758956*x^21 + 16320562*x^20 - 100734462*x^19 + 443795293*x^18 - 1471049082*x^17 + 3971393292*x^16 - 9304893422*x^15 + 17917931016*x^14 - 22612415810*x^13 + 6949925614*x^12 + 21430418050*x^11 + 9738010368*x^10 - 153051533038*x^9 + 256884162558*x^8 - 71451647970*x^7 - 265785285277*x^6 + 220345759446*x^5 + 251887022384*x^4 + 63841610284*x^3 + 5432696107*x^2 + 140661216*x + 800646)/(x-1)^21.
Showing 1-4 of 4 results.