cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A063443 Number of ways to tile an n X n square with 1 X 1 and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 2, 5, 35, 314, 6427, 202841, 12727570, 1355115601, 269718819131, 94707789944544, 60711713670028729, 69645620389200894313, 144633664064386054815370, 540156683236043677756331721, 3641548665525780178990584908643, 44222017282082621251230960522832336
Offset: 0

Views

Author

Reiner Martin, Jul 23 2001

Keywords

Comments

a(n) is also the number of ways to populate an n-1 X n-1 chessboard with nonattacking kings (including the case of zero kings). Cf. A193580. - Andrew Woods, Aug 27 2011
Also the number of vertex covers and independent vertex sets of the n-1 X n-1 king graph.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 343

Crossrefs

a(n) = row sum n-1 of A193580.
Main diagonal of A245013.

Programs

  • Mathematica
    Needs["LinearAlgebra`MatrixManipulation`"] Remove[mat] step[sa[rules1_, {dim1_, dim1_}], sa[rules2_, {dim2_, dim2_}]] := sa[Join[rules2, rules1 /. {x_Integer, y_Integer} -> {x + dim2, y}, rules1 /. {x_Integer, y_Integer} -> {x, y + dim2}], {dim1 + dim2, dim1 + dim2}] mat[0] = sa[{{1, 1} -> 1}, {1, 1}]; mat[1] = sa[{{1, 1} -> 1, {1, 2} -> 1, {2, 1} -> 1}, {2, 2}]; mat[n_] := mat[n] = step[mat[n - 2], mat[n - 1]]; A[n_] := mat[n] /. sa -> SparseArray; F[n_] := MatrixPower[A[n], n + 1][[1, 1]]; (* Mark McClure (mcmcclur(AT)bulldog.unca.edu), Mar 19 2006 *)
    $RecursionLimit = 1000; Clear[a, b]; b[n_, l_List] := b[n, l] = Module[{m=Min[l], k}, If[m>0, b[n-m, l-m], If[n == 0, 1, k=Position[l, 0, 1, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 2}]], 0]]]]; a[n_] := a[n] = If[n<2, 1, b[n, Table[0, {n}]]]; Table[Print[a[n]]; a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 11 2014, after Alois P. Heinz *)

Formula

Lim_{n -> infinity} (a(n))^(1/n^2) = A247413 = 1.342643951124... . - Brendan McKay, 1996

Extensions

4 more terms from R. H. Hardin, Jan 23 2002
2 more terms from Keith Schneider (kschneid(AT)bulldog.unca.edu), Mar 19 2006
5 more terms from Andrew Woods, Aug 27 2011
a(22)-a(24) in b-file from Vaclav Kotesovec, May 01 2012
a(0) inserted by Alois P. Heinz, Sep 17 2014
a(25)-a(40) in b-file from Johan Nilsson, Mar 10 2016

A137774 Number of ways to place n nonattacking empresses on an n X n board.

Original entry on oeis.org

1, 2, 2, 8, 20, 94, 438, 2766, 19480, 163058, 1546726, 16598282, 197708058, 2586423174, 36769177348, 563504645310, 9248221393974, 161670971937362, 2996936692836754, 58689061747521430, 1210222434323163704, 26204614054454840842, 594313769819021397534, 14086979362268860896282
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 27 2011

Keywords

Comments

An empress moves like a rook and a knight.

Crossrefs

Formula

Asymptotics (Vaclav Kotesovec, Jan 26 2011): a(n)/n! -> 1/e^4.
General asymptotic formulas for number of ways to place n nonattacking pieces rook + leaper[r,s] on an n X n board:
a(n)/n! -> 1/e^2 for 0
a(n)/n! -> 1/e^4 for 0

Extensions

Terms a(16)-a(17) from Vaclav Kotesovec, Feb 06 2011
Terms a(18)-a(19) from Wolfram Schubert, Jul 24 2011
Terms a(20)-a(24) (computed by Wolfram Schubert), Vaclav Kotesovec, Aug 25 2012

A193580 Triangle read by rows: T(n,k) = number of ways to place k nonattacking kings on an n X n board.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 9, 16, 8, 1, 1, 16, 78, 140, 79, 1, 25, 228, 964, 1987, 1974, 978, 242, 27, 1, 1, 36, 520, 3920, 16834, 42368, 62266, 51504, 21792, 3600, 1, 49, 1020, 11860, 85275, 397014, 1220298, 2484382, 3324193, 2882737, 1601292, 569818, 129657, 18389, 1520, 64, 1
Offset: 0

Author

Andrew Woods, Aug 27 2011

Keywords

Comments

Rows 2n and 2n-1 both contain 1 + n^2 entries. Cf. A008794.
Row n sums to A063443(n+1).
Number of walks of length n-1 on a graph in which each node represents a 11-avoiding n-bit binary sequence B and adjacency of B and B' is determined by B'&(B|(B<<1)|(B>>1))=0 and the total number of nonzero bits in the walk is k.
Row n gives the coefficients of the independence polynomial of the n X n king graph. - Eric W. Weisstein, Jun 20 2017

Examples

			The table begins with T(0,0):
  1;
  1,   1;
  1,   4;
  1,   9,  16,   8,   1;
  1,  16,  78, 140,  79;
  ...
T(4,3) = 140 because there are 140 ways to place 3 kings on a 4 X 4 chessboard so that no king threatens any other.
		

References

  • Norman Biggs, Algebraic Graph Theory, Cambridge University Press, New York, NY, second edition, 1993.

Crossrefs

Diagonal: A201513.
Cf. A179403, etc., for extension to toroidal boards.
Cf. A166540, etc., for extension into three dimensions.
Cf. A098487 for a clipped version.
Row n sums to A063443(n+1).

Formula

T(n, 0) = 1;
T(n, 1) = n^2;
T(2n-1, n^2-1) = n^3;
T(2n-1, n^2) = 1.

A098487 Triangle T(m,k) read by rows, where T(m,k) is the number of ways in which 1<=k<=m positions can be picked in an m X m square array such that all positions are mutually isolated. Two positions (s,t),(u,v) are considered as isolated from each other if min(abs(s-u),abs(t-v))>1.

Original entry on oeis.org

1, 4, 0, 9, 16, 8, 16, 78, 140, 79, 25, 228, 964, 1987, 1974, 36, 520, 3920, 16834, 42368, 62266, 49, 1020, 11860, 85275, 397014, 1220298, 2484382, 64, 1806, 29708, 317471, 2326320, 12033330, 44601420, 119138166, 81, 2968, 65240, 962089, 10087628, 77784658, 450193818, 1979541332, 6655170642
Offset: 1

Author

Hugo Pfoertner, Sep 15 2004

Keywords

Comments

For more information, links, programs see A098485.

Examples

			T(3,3) = a(6) = 8 because there are the following 8 ways to pick 3 positions isolated from each other from a 3 X 3 square array:
X0X...X0X...X0X...X00...X00...0X0...00X...00X
000...000...000...00X...000...000...X00...000
X00...0X0...00X...X00...X0X...X0X...00X...X0X
Triangle begins:
:  1;
:  4,    0;
:  9,   16,     8;
: 16,   78,   140,     79;
: 25,  228,   964,   1987,    1974;
: 36,  520,  3920,  16834,   42368,    62266;
: 49, 1020, 11860,  85275,  397014,  1220298,  2484382;
: 64, 1806, 29708, 317471, 2326320, 12033330, 44601420, 119138166;
		

Crossrefs

A098485 gives selections where all marks are connected, A090642 gives total number of possible selections.
Main diagonal gives A201513.

Programs

Extensions

T(8,8) corrected by Alois P. Heinz, May 11 2017

A201540 Number of ways to place n nonattacking knights on an n X n board.

Original entry on oeis.org

1, 6, 36, 412, 9386, 257318, 8891854, 379978716, 19206532478, 1120204619108, 74113608972922, 5483225594409823, 448414229054798028, 40154319792412218900, 3906519894750904583838
Offset: 1

Author

Vaclav Kotesovec, Dec 02 2011

Keywords

Comments

a(n) = A244081(n,n). - Alois P. Heinz, Jun 19 2014

Programs

  • Mathematica
    b[n_, l_] := b[n, l] = Module[{d, f, g, k}, d = Length[l]/3; f = False; Which[n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n - 1, Join[l[[d + 1 ;; 3*d]], Array[True&, d]]], True, For[k = 1, ! l[[k]], k++]; g = ReplacePart[l, k -> f];
         If[k > 1, g = ReplacePart[g, 2*d - 1 + k -> f]];
         If[k < d, g = ReplacePart[g, 2*d + 1 + k -> f]];
         If[k > 2, g = ReplacePart[g, d - 2 + k -> f]];
         If[k < d - 1, g = ReplacePart[g, d + 2 + k -> f]];
         Expand[b[n, ReplacePart[l, k -> f]] + b[n, g]*x]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, Array[True&, n*3]]];
    a[n_] := T[n][[n + 1]];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 10}] (* Jean-François Alcover, Mar 29 2016, after Alois P. Heinz's code for A244081 *)

Formula

a(n) ~ n^(2n)/n!*exp(-9/2). - Vaclav Kotesovec, Nov 29 2011

Extensions

a(11) from Alois P. Heinz, Jun 19 2014
a(12)-a(13) from Vaclav Kotesovec, Jun 21 2014
a(14) from Vaclav Kotesovec, Aug 26 2016
a(15) from Vaclav Kotesovec, May 26 2021

A279117 Number of non-equivalent ways to place n non-attacking kings on an n X n board.

Original entry on oeis.org

1, 0, 2, 14, 273, 7855, 311552, 14895797, 831959075, 52959962415
Offset: 1

Author

Heinrich Ludwig, Dec 10 2016

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted, see A201513.

Examples

			There are 14 non-equivalent ways to place 4 non-attacking kings on a 4 X 4 board, e.g., this one:
   K..K
   ....
   ....
   K..K
		

Crossrefs

Cf. A201513, A279111 (2 kings), A279112 (3 kings), A279113 (4 kings), A279114 (5 kings), A279115 (6 kings), A279116 (7 kings), A236679.

A244284 Number of ways to place n nonattacking zebras on an n X n chessboard.

Original entry on oeis.org

1, 6, 84, 1168, 20502, 525796, 18939708, 802444170, 38934305898, 2170312156170
Offset: 1

Author

Vaclav Kotesovec, Jun 25 2014

Keywords

Comments

Zebra is a (fairy chess) leaper [2,3].

Formula

a(n) ~ n^(2*n)/n! * exp(-9/2).

A182563 Number of ways to place n non-attacking semi-knights on an n x n chessboard.

Original entry on oeis.org

1, 6, 70, 1289, 33864, 1148760, 47700972, 2344465830, 133055587660, 8559364525414, 615266768106190, 48861588247978827, 4247584874013608724, 401107335066453376830, 40880928693752664368224, 4472281486633326131737868
Offset: 1

Author

Vaclav Kotesovec, May 05 2012

Keywords

Comments

Semi-knight is a semi-leaper [1,2]. Moves of a semi-knight are allowed only in [2,1] and [-2,-1]. See also semi-bishops (A187235).

Formula

Asymptotic: a(n) ~ n^(2n)/n!*exp(-3/2).

Extensions

a(16) from Vaclav Kotesovec, May 24 2021

A244288 Number of binary arrangements of total n 1's, without adjacent 1's on n X n array connected nw-se.

Original entry on oeis.org

1, 1, 5, 57, 1084, 29003, 999717, 42125233, 2096106904, 120194547233, 7799803041491, 564856080384900, 45146219773912540, 3946445378386791157, 374482268128153003615, 38330653031858936914329, 4209191997519328986666624, 493575737047609363968826907
Offset: 0

Author

Vaclav Kotesovec, Jun 25 2014

Keywords

Programs

  • PARI
    P(m,n) = sum(k=0, (m+1)\2, binomial(m-k+1,k)*x^k, O(x*x^n))
    a(n) = polcoef(P(n,n)*prod(m=1, n-1, P(m,n))^2, n) \\ Andrew Howroyd, Mar 27 2023

Formula

a(n) ~ n^(2*n)/n! * exp(-3/2).

Extensions

a(16) from Vaclav Kotesovec, Sep 04 2016
a(17) from Vaclav Kotesovec, Jun 15 2021
a(0)=1 prepended by Andrew Howroyd, Mar 27 2023

A245011 Number of ways to place n nonattacking princesses on an n X n board.

Original entry on oeis.org

1, 4, 6, 86, 854, 9556, 146168, 2660326, 56083228, 1349544632, 36786865968, 1117327217782
Offset: 1

Author

Vaclav Kotesovec, Sep 16 2014

Keywords

Comments

A princess moves like a bishop and a knight.
Showing 1-10 of 10 results.