Asymptotics (Vaclav Kotesovec, Jan 26 2011): a(n)/n! -> 1/e^4.
General asymptotic formulas for number of ways to place n nonattacking pieces rook + leaper[r,s] on an n X n board:
a(n)/n! -> 1/e^2 for 0
a(n)/n! -> 1/e^4 for 0
Terms a(18)-a(19) from Wolfram Schubert, Jul 24 2011
A193580
Triangle read by rows: T(n,k) = number of ways to place k nonattacking kings on an n X n board.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 9, 16, 8, 1, 1, 16, 78, 140, 79, 1, 25, 228, 964, 1987, 1974, 978, 242, 27, 1, 1, 36, 520, 3920, 16834, 42368, 62266, 51504, 21792, 3600, 1, 49, 1020, 11860, 85275, 397014, 1220298, 2484382, 3324193, 2882737, 1601292, 569818, 129657, 18389, 1520, 64, 1
Offset: 0
The table begins with T(0,0):
1;
1, 1;
1, 4;
1, 9, 16, 8, 1;
1, 16, 78, 140, 79;
...
T(4,3) = 140 because there are 140 ways to place 3 kings on a 4 X 4 chessboard so that no king threatens any other.
- Norman Biggs, Algebraic Graph Theory, Cambridge University Press, New York, NY, second edition, 1993.
- Liang Kai, Rows n = 0..26, flattened (Rows n = 0..20 from Andrew Woods, row n = 21 from Alois P. Heinz)
- Kai Liang, Independent Set Enumeration in King Graphs by Tensor Network Contractions, arXiv:2505.12776 [math.CO], 2025. See p. 1.
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares arXiv:1609.03964 [math.CO], 2016, Section 4.1.
- Johan Nilsson, On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.2.
- Eric Weisstein's World of Mathematics, Independence Polynomial
- Eric Weisstein's World of Mathematics, King Graph
Cf.
A179403, etc., for extension to toroidal boards.
Cf.
A166540, etc., for extension into three dimensions.
A098487
Triangle T(m,k) read by rows, where T(m,k) is the number of ways in which 1<=k<=m positions can be picked in an m X m square array such that all positions are mutually isolated. Two positions (s,t),(u,v) are considered as isolated from each other if min(abs(s-u),abs(t-v))>1.
Original entry on oeis.org
1, 4, 0, 9, 16, 8, 16, 78, 140, 79, 25, 228, 964, 1987, 1974, 36, 520, 3920, 16834, 42368, 62266, 49, 1020, 11860, 85275, 397014, 1220298, 2484382, 64, 1806, 29708, 317471, 2326320, 12033330, 44601420, 119138166, 81, 2968, 65240, 962089, 10087628, 77784658, 450193818, 1979541332, 6655170642
Offset: 1
T(3,3) = a(6) = 8 because there are the following 8 ways to pick 3 positions isolated from each other from a 3 X 3 square array:
X0X...X0X...X0X...X00...X00...0X0...00X...00X
000...000...000...00X...000...000...X00...000
X00...0X0...00X...X00...X0X...X0X...00X...X0X
Triangle begins:
: 1;
: 4, 0;
: 9, 16, 8;
: 16, 78, 140, 79;
: 25, 228, 964, 1987, 1974;
: 36, 520, 3920, 16834, 42368, 62266;
: 49, 1020, 11860, 85275, 397014, 1220298, 2484382;
: 64, 1806, 29708, 317471, 2326320, 12033330, 44601420, 119138166;
A098485 gives selections where all marks are connected,
A090642 gives total number of possible selections.
A201540
Number of ways to place n nonattacking knights on an n X n board.
Original entry on oeis.org
1, 6, 36, 412, 9386, 257318, 8891854, 379978716, 19206532478, 1120204619108, 74113608972922, 5483225594409823, 448414229054798028, 40154319792412218900, 3906519894750904583838
Offset: 1
-
b[n_, l_] := b[n, l] = Module[{d, f, g, k}, d = Length[l]/3; f = False; Which[n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n - 1, Join[l[[d + 1 ;; 3*d]], Array[True&, d]]], True, For[k = 1, ! l[[k]], k++]; g = ReplacePart[l, k -> f];
If[k > 1, g = ReplacePart[g, 2*d - 1 + k -> f]];
If[k < d, g = ReplacePart[g, 2*d + 1 + k -> f]];
If[k > 2, g = ReplacePart[g, d - 2 + k -> f]];
If[k < d - 1, g = ReplacePart[g, d + 2 + k -> f]];
Expand[b[n, ReplacePart[l, k -> f]] + b[n, g]*x]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, Array[True&, n*3]]];
a[n_] := T[n][[n + 1]];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 10}] (* Jean-François Alcover, Mar 29 2016, after Alois P. Heinz's code for A244081 *)
A279117
Number of non-equivalent ways to place n non-attacking kings on an n X n board.
Original entry on oeis.org
1, 0, 2, 14, 273, 7855, 311552, 14895797, 831959075, 52959962415
Offset: 1
There are 14 non-equivalent ways to place 4 non-attacking kings on a 4 X 4 board, e.g., this one:
K..K
....
....
K..K
A244284
Number of ways to place n nonattacking zebras on an n X n chessboard.
Original entry on oeis.org
1, 6, 84, 1168, 20502, 525796, 18939708, 802444170, 38934305898, 2170312156170
Offset: 1
A182563
Number of ways to place n non-attacking semi-knights on an n x n chessboard.
Original entry on oeis.org
1, 6, 70, 1289, 33864, 1148760, 47700972, 2344465830, 133055587660, 8559364525414, 615266768106190, 48861588247978827, 4247584874013608724, 401107335066453376830, 40880928693752664368224, 4472281486633326131737868
Offset: 1
A244288
Number of binary arrangements of total n 1's, without adjacent 1's on n X n array connected nw-se.
Original entry on oeis.org
1, 1, 5, 57, 1084, 29003, 999717, 42125233, 2096106904, 120194547233, 7799803041491, 564856080384900, 45146219773912540, 3946445378386791157, 374482268128153003615, 38330653031858936914329, 4209191997519328986666624, 493575737047609363968826907
Offset: 0
-
P(m,n) = sum(k=0, (m+1)\2, binomial(m-k+1,k)*x^k, O(x*x^n))
a(n) = polcoef(P(n,n)*prod(m=1, n-1, P(m,n))^2, n) \\ Andrew Howroyd, Mar 27 2023
A245011
Number of ways to place n nonattacking princesses on an n X n board.
Original entry on oeis.org
1, 4, 6, 86, 854, 9556, 146168, 2660326, 56083228, 1349544632, 36786865968, 1117327217782
Offset: 1
Comments