A201639 Triangle read by rows, T(n,k) for 0<=k<=n, generalizes the Motzkin lattice paths with weights of A003645.
1, 4, 1, 20, 8, 1, 112, 56, 12, 1, 672, 384, 108, 16, 1, 4224, 2640, 880, 176, 20, 1, 27456, 18304, 6864, 1664, 260, 24, 1, 183040, 128128, 52416, 14560, 2800, 360, 28, 1, 1244672, 905216, 396032, 121856, 27200, 4352, 476, 32, 1, 8599552, 6449664, 2976768
Offset: 0
Examples
[0] [1] [1] [4, 1] [2] [20, 8, 1] [3] [112, 56, 12, 1] [4] [672, 384, 108, 16, 1] [5] [4224, 2640, 880, 176, 20, 1] [6] [27456, 18304, 6864, 1664, 260, 24, 1] [7] [183040, 128128, 52416, 14560, 2800, 360, 28, 1]
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..9044
Programs
-
GAP
Flat(List([0..10], n->List([0..n],k->(k+1)*2^(n-k)*Binomial(2*(n+1),n-k)/(n+1)))); # Muniru A Asiru, Apr 07 2018
-
Magma
/* As triangle */ [[(k+1)*2^(n-k)*Binomial(2*(n+1),n-k)/(n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Apr 07 2018
-
Mathematica
Flatten[Table[(k + 1) 2^(n - k) Binomial[2 (n + 1), n - k] / (n + 1), {n, 0, 11}, {k, 0, n}]] (* Vincenzo Librandi, Apr 07 2018 *)
-
PARI
T(n,k) = (k+1)*2^(n-k)*binomial(2*(n+1),n-k)/(n+1); tabl(nn) = for(n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 07 2018
-
Sage
def A201639_triangle(dim): T = matrix(ZZ,dim,dim) for n in range(dim): T[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): T[n,k] = T[n-1,k-1]+4*T[n-1,k]+4*T[n-1,k+1] return T A201639_triangle(9)
Formula
Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n>=1 T(n,k) = T(n-1,k-1)+4*T(n-1,k)+4*T(n-1,k+1).
G.f.: -(4*x+sqrt(1-8*x)-1)/((4*x^2-x)*y+sqrt(1-8*x)*x*y+8*x^2). - Vladimir Kruchinin, Apr 06 2018
T(n,k) = (k+1)*2^(n-k)*C(2*(n+1),n-k)/(n+1). - Vladimir Kruchinin, Apr 06 2018