A163138
G.f. satisfies: A(x) = exp( Sum_{n>=1} (2^n + A(x))^n * x^n/n ).
Original entry on oeis.org
1, 3, 20, 329, 22584, 7938470, 12605643936, 84977963809781, 2379247465188706528, 273419351336298753589802, 128009562526607810326874017088, 242979581192696030760182903464959706
Offset: 0
G.f.: A(x) = 1 + 3*x + 20*x^2 + 329*x^3 + 22584*x^4 + 7938470*x^5 +...
log(A(x)) = [2 + A(x)]*x + [2^2 + A(x)]^2*x^2/2 + [2^3 + A(x)]^3*x^3/3 +...
log(A(x)*(1-xA(x))) = 2/(1-2xA(x))*x + 2^4/(1-4xA(x))^2*x^2/2 + 2^9/(1-8xA(x))^3*x^3/3 +...
log(A(x)) = 3*x + 31*x^2/2 + 834*x^3/3 + 86227*x^4/4 + 39339038*x^5/5 +...
-
m = 12; A[] = 1; Do[A[x] = Exp[Sum[(2^n + A[x])^n x^n/n, {n, 1, m}]] + O[x]^m, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2^m+A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
A202668
G.f. satisfies: A(x) = exp( Sum_{n>=1} (A(x) - (-1)^n)^n * x^n/n ).
Original entry on oeis.org
1, 2, 4, 12, 42, 158, 618, 2498, 10360, 43832, 188420, 820608, 3613212, 16057640, 71933768, 324482500, 1472604586, 6719100254, 30804229858, 141829955338, 655541387406, 3040527731790, 14147444737654, 66018910398574, 308898542610666, 1448867831911170
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 42*x^4 + 158*x^5 + 618*x^6 + ...
where
log(A(x)) = (A(x) + 1)*x + (A(x) - 1)^2*x^2/2 + (A(x) + 1)^3*x^3/3 + (A(x) - 1)^4*x^4/4 + ...
log( A(x)*(1-x*A(x)) ) = 1/(1 + x*A(x))*x + 1/(1 - x*A(x))^2*x^2/2 + 1/(1 + x*A(x))^3*x^3/3 + 1/(1 - x*A(x))^4*x^4/4 + ...
From _Paul D. Hanna_, Oct 11 2024: (Start)
SPECIFIC VALUES.
A(t) = 2 at t = 0.195782060076367892865630673522992184838101...
where 12*t^3 - 4*t^2 - 15*t + 3 = 0.
A(t) = 3/2 at t = 0.1528468026979892250300352740045422934687...
where 45*t^3 - 18*t^2 - 260*t + 40 = 0.
A(1/6) = 1.5975588141693553913621853542774164447766461118908...
A(1/7) = 1.4422077780342017637064340698606478883307441400444...
A(1/8) = 1.3558965312086216338851741626422486193364696459775...
A(1/9) = 1.2992876417963412242026519185070094965390617289384...
A(1/10) = 1.258828814568496961617240364573696812116531654741...
(End)
-
{a(n) = my(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (A - (-1)^m +x*O(x^n))^m * x^m/m))); polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
A185385
G.f. satisfies: A(x) = exp( Sum_{n>=1} (2*A(x) - (-1)^n)^n * x^n/n ).
Original entry on oeis.org
1, 3, 11, 61, 381, 2527, 17559, 126265, 931321, 7007035, 53568131, 414929621, 3249392917, 25684315319, 204645707183, 1641910625009, 13253684541553, 107561523423731, 877109999610107, 7183095973808493, 59053492869471661, 487189276030904207, 4032100262853037127
Offset: 0
G.f.: A(x) = 1 + 3*x + 11*x^2 + 61*x^3 + 381*x^4 + 2527*x^5 + 17559*x^6 +...
where
log(A(x)) = (2*A(x) + 1)*x + (2*A(x) - 1)^2*x^2/2 + (2*A(x) + 1)^3*x^3/3 + (2*A(x) - 1)^4*x^4/4 +...
log(A(x)*(1-2*x*A(x))) = 1/(1 + 2*x*A(x))*x + 1/(1 - 2*x*A(x))^2*x^2/2 + 1/(1 + 2*x*A(x))^3*x^3/3 + 1/(1 - 2*x*A(x))^4*x^4/4 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2*A-(-1)^m+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
A202629
G.f.: exp( Sum_{n>=1} (3^n - A(x))^n * x^n/n ).
Original entry on oeis.org
1, 2, 32, 5872, 10244654, 166008832278, 24810745551644598, 34076373857728228215714, 428687442859626139066325301140, 49247086410581981443124673896698437124, 51529024823944797258322973430879108808780359272
Offset: 0
G.f.: A(x) = 1 + 2*x + 32*x^2 + 5872*x^3 + 10244654*x^4 + 166008832278*x^5 +...
where
log(A(x)) = (3 - A(x))*x + (3^2 - A(x))^2*x^2/2 + (3^3 - A(x))^3*x^3/3 + (3^4 - A(x))^4*x^4/4 +...
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,(3^m-A+x*O(x^n))^m*x^m/m)));polcoeff(A,n)}
Showing 1-4 of 4 results.
Comments