A202671
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202670 based on A000290 (the squares); by antidiagonals.
Original entry on oeis.org
1, -1, 1, -18, 1, 1, -84, 116, -1, 1, -214, 1707, -470, 1, 1, -408, 9430, -17896, 1449, -1, 1, -666, 31877, -196046, 124782, -3724, 1, 1, -988, 81720, -1120768, 2530948, -656400, 8400, -1, 1, -1374, 175727, -4386774, 23536143
Offset: 1
The 1st principal submatrix (ps) of A202670 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}.
...
The 2nd ps is {{1,4},{4,17}}, with p(2)=1-18x+x^2 and zero-set {0.556..., 17.944...}.
...
The 3rd ps is {{1,4,9},{4,17,40},{9,40,98}}, with p(3)=1-84x+116x^2-x^3 and zero-set {0.012..., 0.716..., 115.271...}.
...
Top of the array:
1...-1
1...-18.. ..1
1...-84... 116.....-1
1...-214...1707..-470...1
-
f[k_] := k^2
U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
F[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[F[n], x]
TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%]
TableForm[Table[c[n], {n, 1, 10}]]
A193722
Triangular array: the fusion of (x+1)^n and (x+2)^n; see Comments for the definition of fusion.
Original entry on oeis.org
1, 1, 2, 1, 5, 6, 1, 8, 21, 18, 1, 11, 45, 81, 54, 1, 14, 78, 216, 297, 162, 1, 17, 120, 450, 945, 1053, 486, 1, 20, 171, 810, 2295, 3888, 3645, 1458, 1, 23, 231, 1323, 4725, 10773, 15309, 12393, 4374, 1, 26, 300, 2016, 8694, 24948, 47628, 58320, 41553, 13122
Offset: 0
First six rows:
1;
1, 2;
1, 5, 6;
1, 8, 21, 18;
1, 11, 45, 81, 54;
1, 14, 78, 216, 297, 162;
-
Flat(List([0..10], n-> List([0..n], k-> 3^(k-1)*( Binomial(n-1,k) + 2*Binomial(n,k) ) ))); # G. C. Greubel, Feb 18 2020
-
[3^(k-1)*( Binomial(n-1,k) + 2*Binomial(n,k) ): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
-
fusion := proc(p, q, n) local d, k;
p(n-1,0)*q(n,x)+add(coeff(p(n-1,x),x^k)*q(n-k,x), k=1..n-1);
[1,seq(coeff(%,x,n-1-k), k=0..n-1)] end:
p := (n, x) -> (x + 1)^n; q := (n, x) -> (x + 2)^n;
A193722_row := n -> fusion(p, q, n);
for n from 0 to 5 do A193722_row(n) od; # Peter Luschny, Jul 24 2014
-
(* First program *)
z = 9; a = 1; b = 1; c = 1; d = 2;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193722 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193723 *)
(* Second program *)
Table[3^(k-1)*(Binomial[n-1,k] +2*Binomial[n,k]), {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
-
T(n,k) = 3^(k-1)*(binomial(n-1,k) +2*binomial(n,k)); \\ G. C. Greubel, Feb 18 2020
-
def fusion(p, q, n):
F = p(n-1,0)*q(n,x)+add(expand(p(n-1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n-1))
return [1]+[expand(F).coefficient(x,n-1-k) for k in (0..n-1)]
A193842_row = lambda k: fusion(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k)
for n in range(7): A193842_row(n) # Peter Luschny, Jul 24 2014
A202605
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the Fibonacci self-fusion matrix (A202453).
Original entry on oeis.org
1, -1, 1, -3, 1, 1, -6, 9, -1, 1, -9, 26, -24, 1, 1, -12, 52, -96, 64, -1, 1, -15, 87, -243, 326, -168, 1, 1, -18, 131, -492, 1003, -1050, 441, -1, 1, -21, 184, -870, 2392, -3816, 3265, -1155, 1, 1, -24, 246, -1404, 4871, -10500, 13710
Offset: 1
The 1st principal submatrix (ps) of A202453 is {{1}} (using Mathematica matrix notation), with p(1) = 1-x and zero-set {1}.
...
The 2nd ps is {{1,1},{1,2}}, with p(2) = 1-3x+x^2 and zero-set {0.382..., 2.618...}.
...
The 3rd ps is {{1,1,2},{1,2,3},{2,3,6}}, with p(3) = 1-6x+9x^2-x^3 and zero-set {0.283..., 0.426..., 8.290...}.
...
Top of the array A202605:
1, -1;
1, -3, 1;
1, -6, 9, -1;
1, -9, 26, -24, 1;
1, -12, 52, -96, 64, -1;
1, -15, 87, -243, 326, -168, 1;
- S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
- A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.
-
f[k_] := Fibonacci[k];
U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
F[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[F[n], x]
TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%]
TableForm[Table[c[n], {n, 1, 10}]]
Showing 1-3 of 3 results.
Comments