cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202814 Moments of the quadratic coefficient of the characteristic polynomial of a random matrix in U(1) X U(1) (embedded in USp(4)).

Original entry on oeis.org

1, 2, 8, 32, 148, 712, 3584, 18496, 97444, 521096, 2820448, 15414016, 84917584, 470982176, 2627289344, 14728751872, 82928400164, 468699173576, 2657978454944, 15118824666496, 86230489902928, 493021885470496, 2825114755879424, 16221295513400576, 93312601350167824, 537693975424462112, 3103220029717015424
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2011

Keywords

Examples

			1 + 2*x + 8*x^2 + 32*x^3 + 148*x^4 + 712*x^5 + 3584*x^6 + 18496*x^7 + 97444*x^8 + ...
		

Crossrefs

Cf. A126869 (the sequence b(n)), A202856.
Cf. A002426.

Programs

  • Maple
    b:=n->coeff((x^2+1)^n,x,n); #A126869
    bh:=n->add(binomial(n,k)*2^(n-k)*b(k)^2,k=0..n);
    [seq(bh(n),n=0..30)];
    # alternative program (faster for large n)
    seq(simplify(2^n * hypergeom([-n/2, (-n+1)/2, 1/2], [1, 1], 4)), n = 0..30); #  Peter Bala, May 30 2024
  • Mathematica
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (Exp[x] BesselI[0, 2 x])^2, {x, 0, n}]] (* Michael Somos, Jun 27 2012 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( (exp(x + A) * besseli( 0, 2*x + A))^2, n))} /* Michael Somos, Jun 27 2012 */
    
  • PARI
    {a(n)=polcoeff( 1 / agm(1-6*x, 1+2*x +x*O(x^n)), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 31 2014

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*2^(n-k)*b(k)^2, where b() = A126869().
E.g.f.: (exp(x) * I_0(2*x))^2 = square of e.g.f. of A002426. - Michael Somos, Jun 27 2012
From Mark van Hoeij, May 07 2013: (Start)
a(n) is the constant term of (2+x+y+1/x+1/y)^n.
G.f.: hypergeom([1/2, 1/2],[1],16*x^2/(1-2*x)^2)/(1-2*x). (End)
G.f.: 1 / AGM(1-6*x, 1+2*x), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean. - Paul D. Hanna, Aug 31 2014
D-finite with recurrence n^2*a(n) +2*(-3*n^2+3*n-1)*a(n-1) -4*(n-1)^2*a(n-2) +24*(n-1) *(n-2)*a(n-3)=0. - R. J. Mathar, Jun 14 2016
a(n) ~ 2^(n-1) * 3^(n+1) / (Pi*n). - Vaclav Kotesovec, Jul 20 2019
From Peter Bala, May 30 2024: (Start)
a(n) = Sum_{k = 0..n} binomial(n, 2*k) * binomial(2*k, k)^2 * 2^(n-2*k).
a(n) = 2^n * hypergeom([-n/2, (-n+1)/2, 1/2], [1, 1], 4). (End)