A201805
Number of arrays of n integers in -2..2 with sum zero and equal numbers of elements greater than zero and less than zero.
Original entry on oeis.org
1, 1, 5, 13, 61, 221, 1001, 4145, 18733, 82381, 375745, 1703945, 7858225, 36279985, 168992045, 789433013, 3707816333, 17467638925, 82599195809, 391645961993, 1862242702201, 8875355178521, 42394598106965, 202903189757053
Offset: 0
Some solutions for n=9
.-1...-1....1....1....0...-2....2...-1...-2...-2....1....1....1....2....0....1
..1...-2...-2...-2...-1...-2....1....0....2....1....0...-2...-1...-2....0...-1
..0....0....2....1...-1....2...-1....1....0...-2...-1....1...-2....1...-1....1
.-1...-2....2....0...-2....1....0....2....0....0...-1...-1....2...-1....0....1
..2....1....0....2...-1....0....1...-2...-1...-1....1....0...-2....1....0...-1
..0....2...-2...-1....2....0...-2...-2....0....2....1...-1...-2....2....2....1
..1....1...-2....1....1...-1....0....2....1...-2....0....2....2...-2...-2...-1
..0...-1....2...-1....1....2...-1...-2....1....2...-1...-2....0....0....0....0
.-2....2...-1...-1....1....0....0....2...-1....2....0....2....2...-1....1...-1
Sum_{k=0..n} C(n,2k)*C(2k,k)^m:
A002426 (m=1), this sequence (m=2).
-
a[n_]=HypergeometricPFQ[{1/2, 1/2 - n/2, -(n/2)}, {1, 1}, 16]; (* or *)
a[n_]=Sum[Binomial[n, 2 k] Binomial[2 k, k]^2, {k, 0, n}]; (* or *)
Hypergeometric2F1[1/2, 1/2, 1, 16*x^2/(1 - x)^2]/(1 - x); (* O.g.f. *)
Exp[x] BesselI[0, 2 x] BesselI[0, 2 x]; (* E.g.f. *)(* Pierre-Louis Giscard, Jun 25 2014 *)
Nm=100;
C1=Table[0,{j,1,Nm},{k,1,Nm}];
C1[[Nm/2,Nm/2]]=1;
C2=C1;
Do[Do[C2[[j,k]]=C1[[j-1,k]]+C1[[j+1,k]]+C1[[j,k-1]]+C1[[j,k+1]]+C1[[j,k]],{j,2,Nm-1},{k,2,Nm-1}];Print[n," ",C2[[Nm/2,Nm/2]]];
C1=C2,{n,1,20}] (* Yuriy Sibirmovsky, Sep 17 2016 *)
-
a(n) = sum(k=0, n, binomial(n, 2*k)*binomial(2*k,k)^2); \\ Michel Marcus, Jun 25 2014
-
{a(n)=polcoeff(1/agm(1+3*x, 1-5*x +x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 31 2014
-
{a(n) = polcoef(polcoef((1+x+y+1/x+1/y)^n, 0), 0)} \\ Seiichi Manyama, Oct 26 2019
A202856
Moments of the quadratic coefficient of the characteristic polynomial of a random matrix in SU(2) X SU(2) (inside USp(4)).
Original entry on oeis.org
1, 2, 5, 14, 44, 152, 569, 2270, 9524, 41576, 187348, 866296, 4092400, 19684576, 96156649, 476038222, 2384463044, 12067926920, 61641751124, 317469893176, 1647261806128, 8605033903456, 45228349510660, 239061269168056, 1270130468349904, 6780349241182112, 36355025167014224, 195725149445320160, 1057729059593103808
Offset: 0
-
b:=n->coeff((x^2+1)^n, x, n); # A126869
c:=n->b(n)/((n/2)+1); # A126120
ch:=n->add(binomial(n, k)*2^(n-k)*c(k)^2, k=0..n); # A202856
[seq(ch(n), n=0..30)];
-
b[n_] := Coefficient[(x^2+1)^n, x, n]; (* A126869 *)
c[n_] := b[n]/(n/2+1); (* A126120 *)
ch[n_] := Sum[Binomial[n, k] 2^(n-k) c[k]^2, {k, 0, n}]; (* A202856 *)
Table[ch[n], {n, 0, 30}] (* Jean-François Alcover, Aug 10 2018, translated from Maple *)
A302181
Number of 3D walks of type abb.
Original entry on oeis.org
1, 5, 62, 1065, 21714, 492366, 12004740, 308559537, 8255788970, 227976044010, 6457854821340, 186814834574550, 5500292590186380, 164387681345290500, 4976887208815547640, 152378485941172462785, 4711642301137121933850, 146964278352052950118770, 4619875954522866283392300
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
C := n-> binomial(2*n, n)/(n+1): # Catalan numbers
A302181 := n-> add(binomial(2*n, k)*C(iquo(k+1, 2))*C(iquo(k, 2))*(2*iquo(k, 2)+1)*add((-1)^(k+j)*binomial(2*n-k, iquo(j,2)), j=0..2*n-k), k=0..2*n): seq(A302181(n), n = 0 .. 18); # Mélika Tebni, Nov 06 2024
A302180
Number of 3D walks of type aad.
Original entry on oeis.org
1, 1, 3, 7, 23, 71, 251, 883, 3305, 12505, 48895, 193755, 783355, 3205931, 13302329, 55764413, 236174933, 1008773269, 4343533967, 18834033443, 82201462251, 360883031291, 1592993944723, 7066748314147, 31493800133173, 140953938878821, 633354801073571, 2856369029213263
Offset: 0
Cf.
A000108,
A000984,
A001006,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
M := n-> add(binomial(n, 2*k)*binomial(2*k, k)/(k+1), k = 0 .. iquo(n,2)): # Motzkin numbers
A302180 := n-> add((-1)^(n-k)*binomial(n, k)*add(binomial(k, j)*M(j)*M(k-j), j=0..k), k=0..n): seq(A302180(n), n = 0 .. 26); # Mélika Tebni, Nov 05 2024
A302182
Number of 3D walks of type abc.
Original entry on oeis.org
1, 1, 5, 12, 62, 200, 1065, 3990, 21714, 89082, 492366, 2147376, 12004740, 54718092, 308559537, 1454116950, 8255788970, 39935276810, 227976044010, 1126178350440, 6457854821340, 32456552441040, 186814834574550, 952569927106980, 5500292590186380, 28391993275117500
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
from math import comb as binomial
def row(n: int) -> list[int]:
return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(n-k, (n-k)//2)**2 for k in range(n+1))
for n in range(26): print(row(n)) # Mélika Tebni, Nov 27 2024
A302184
Number of 3D walks of type abe.
Original entry on oeis.org
1, 2, 7, 26, 108, 472, 2159, 10194, 49396, 244328, 1229308, 6273896, 32410096, 169181664, 891181607, 4731912082, 25302648644, 136150941064, 736747902236, 4007011320808, 21893702201648, 120125750018656, 661630546993116, 3656966382542984, 20278320788680912, 112782556853239712
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A126120,
A138547,
A145847,
A145867,
A150500,
A202814.
-
a := n -> 2*add(binomial(n, k)*binomial(k, k/2)*binomial(2*(n-k), n-k)/(k+2), k = 0..n, 2): seq(a(n), n = 0..25); # Peter Luschny, Nov 30 2024
-
from math import comb as binomial
def a(n: int):
return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(2*(n-k), n-k) for k in range(n+1))
print([a(n) for n in range(26)]) # Mélika Tebni, Nov 30 2024
A302178
The number of 3D walks of semilength n in a quadrant returning to the origin.
Original entry on oeis.org
1, 4, 40, 570, 9898, 195216, 4209084, 96941130, 2349133930, 59272544760, 1545550116240, 41416083787260, 1135679731004700, 31760915181412800, 903492759037272480, 26086451983000501410, 763124703525758894490, 22585374873810849150600, 675419388009799152812400
Offset: 0
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5. The sequence is type aab in Table 3.
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
A302179
The number of 3D walks of length n in an octant returning to axis of origin.
Original entry on oeis.org
1, 1, 4, 9, 40, 120, 570, 1995, 9898, 38178, 195216, 805266, 4209084, 18239364, 96941130, 436235085, 2349133930, 10891439130, 59272544760, 281544587610, 1545550116240, 7489973640240, 41416083787260, 204122127237210, 1135679731004700, 5678398655023500, 31760915181412800, 160789633105902300
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
C(n) = binomial(2*n, n)/(n+1); \\ A000108
f(n) = binomial(n, floor(n/2)); \\ A001405
a(n) = sum(i=0, n, if (!(i%2), sum(j=0, n-i, if (!(j%2), C(i/2)*C(j/2)*f(n-i-j)*n!/(i! * j! * (n-i-j)!))))); \\ Michel Marcus, Aug 07 2020
A302183
Number of 3D n-step walks of type abd.
Original entry on oeis.org
1, 1, 4, 10, 39, 131, 521, 1989, 8149, 33205, 139870, 592120, 2552155, 11079303, 48639722, 214997228, 957817013, 4292316197, 19349957108, 87663905954, 399038606291, 1823961268751, 8369603968599, 38540835938335, 178056111047329, 825079806039121, 3833960405339446
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
from math import comb as binomial
def M(n): return sum(binomial(n, 2*k)*binomial(2*k, k)//(k+1) for k in range(n//2+1)) # Motzkin numbers
def a(n):
return sum(binomial(n, k)*binomial(k, k//2)*((k+1) %2)*M(n-k) for k in range(n+1))
print([a(n) for n in range(27)]) # Mélika Tebni, Dec 03 2024
A302185
Number of 3D n-step walks of type acc.
Original entry on oeis.org
1, 2, 7, 24, 98, 400, 1785, 7980, 37674, 178164, 874146, 4294752, 21667932, 109436184, 563910633, 2908233900, 15235550330, 79870553620, 424021948350, 2252356700880, 12088746573540, 64913104882080, 351594254659830, 1905139854213960, 10399223643879420, 56783986550235000
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
b:= n-> binomial(n, floor(n/2))*binomial(n+1, floor((n+1)/2)):
C:= n-> binomial(2*n, n)/(n+1):
a:= n-> add(binomial(n, 2*k)*C(k)*b(n-2*k), k=0..n/2):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 06 2024
# second Maple program:
a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 24][n+1],
(8*(14*n^4+85*n^3+190*n^2+188*n+63)*a(n-1)+4*(n-1)*
(80*n^4+418*n^3+676*n^2+269*n-108)*a(n-2)-96*(n-1)*(n-2)*
(10*n^2+31*n+27)*a(n-3)-144*(n-1)*(n-2)*(n-3)*(8*n^2+33*n+36)*
a(n-4))/((n+4)*(n+3)*(n+2)*(8*n^2+17*n+11)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 06 2024
-
b[n_] := Binomial[n, Floor[n/2]]*Binomial[n+1, Floor[(n+1)/2]];
c[n_] := Binomial[2*n, n]/(n+1);
a[n_] := Sum[Binomial[n, 2*k]*c[k]*b[n - 2*k], {k, 0, n/2}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 28 2025, after Alois P. Heinz *)
-
from math import comb as binomial
def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
def a(n):
return sum(binomial(n, k)*C((k+1)//2)*C(k//2)*(2*(k//2)+1)*binomial(n-k, (n-k)//2) for k in range(n+1))
print([a(n) for n in range(26)]) # Mélika Tebni, Dec 06 2024
Showing 1-10 of 13 results.
Comments