cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A150500 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 1), (0, 1, 0), (1, 1, -1), (1, 1, 1)}.

Original entry on oeis.org

1, 2, 7, 25, 101, 416, 1787, 7792, 34645, 155722, 707795, 3242515, 14963665, 69458000, 324102287, 1519028843, 7147771981, 33750528146, 159860887355, 759295147045, 3615520821281, 17255165910632, 82521746019487, 395404081034830, 1897886817388201, 9124229781131546, 43930513066698367, 211803668881914847
Offset: 0

Views

Author

Manuel Kauers, Nov 18 2008

Keywords

Crossrefs

Cf. A201805.

Programs

  • Mathematica
    aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

Formula

a(n) = (A201805(n+1) + 3*A201805(n))/4. - Mark van Hoeij, Nov 29 2024

A328718 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of (1 + x_1 + x_2 + ... + x_n + 1/x_1 + 1/x_2 + ... + 1/x_n)^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 19, 13, 7, 1, 1, 1, 51, 61, 19, 9, 1, 1, 1, 141, 221, 127, 25, 11, 1, 1, 1, 393, 1001, 511, 217, 31, 13, 1, 1, 1, 1107, 4145, 3301, 921, 331, 37, 15, 1, 1, 1, 3139, 18733, 16297, 7761, 1451, 469, 43, 17, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2019

Keywords

Comments

T(n,k) is the number of k-step closed walks (from origin to origin) in n-dimensional lattice where each step changes at most one component by -1 or by +1. - Alois P. Heinz, Oct 26 2019
Conjecture: Row r is asymptotic to (2*r+1)^(n + r/2) / (2^r * (Pi*n)^(r/2)). - Vaclav Kotesovec, Oct 27 2019

Examples

			Square array begins:
   1, 1,  1,  1,   1,    1,     1,      1, ...
   1, 1,  3,  7,  19,   51,   141,    393, ...
   1, 1,  5, 13,  61,  221,  1001,   4145, ...
   1, 1,  7, 19, 127,  511,  3301,  16297, ...
   1, 1,  9, 25, 217,  921,  7761,  41889, ...
   1, 1, 11, 31, 331, 1451, 15101,  85961, ...
   1, 1, 13, 37, 469, 2101, 26041, 153553, ...
		

Crossrefs

Main diagonal is A328716.

Formula

From Vaclav Kotesovec, Oct 30 2019: (Start)
Columns:
T(n,2) = 2*n + 1.
T(n,3) = 6*n + 1.
T(n,4) = 12*n^2 + 6*n + 1.
T(n,5) = 60*n^2 - 10*n + 1.
T(n,6) = 120*n^3 + 20*n + 1.
T(n,7) = 840*n^3 - 840*n^2 + 392*n + 1. (End)

A282252 Exponential Riordan array [Bessel_I(0,2*x)^2, x].

Original entry on oeis.org

1, 0, 1, 4, 0, 1, 0, 12, 0, 1, 36, 0, 24, 0, 1, 0, 180, 0, 40, 0, 1, 400, 0, 540, 0, 60, 0, 1, 0, 2800, 0, 1260, 0, 84, 0, 1, 4900, 0, 11200, 0, 2520, 0, 112, 0, 1, 0, 44100, 0, 33600, 0, 4536, 0, 144, 0, 1, 63504, 0, 220500, 0, 84000, 0, 7560, 0, 180, 0, 1
Offset: 0

Views

Author

Peter Bala, Feb 12 2017

Keywords

Comments

Bessel_I(0,2*x) = Sum_{n >= 0} binomial(2*n,n)*x^(2*n)/(2*n)! is a modified Bessel function of the first kind.
Consider the infinite 2-dimensional square lattice Z x Z with an oriented self-loop at each vertex. Then the triangle entry T(n,k) equals the number of walks of length n from the origin to itself having k loops. An example is given below.
See A069466 for walks an infinite 2-dimensional square lattice without self-loops.
This is the square of triangle A109187, whose entries give the number of walks of length n from a vertex to itself having k loops on a 1-dimensional integer lattice with an oriented self-loop at each vertex.
A109187 is the exponential Riordan array [Bessel_I(0,2*x), x]. Note that Bessel_I(0,2*x)^2 = (Sum_{n >= 0} binomial(2*n,n)* x^(2*n)/(2*n)!)^2 = Sum_{n >= 0} binomial(2*n,n)^2*x^(2*n) /(2*n)!.

Examples

			The triangle begins
    1;
    0,   1;
    4,   0,   1;
    0,  12,   0,   1;
   36,   0,  24,   0,   1;
    0, 180,   0,  40,   0,   1;
  400,   0, 540,   0,  60,   0,   1;
  ...
T(3,1) = 12: on the square lattice, let L, R, U, D denote a left step, right step, up step and down step respectively. The 12 walks of length 3 containing a single loop are
    loop L R, loop R L, loop U D, loop D U,
    L loop R, R loop L, U loop D, D loop U,
    L R loop, R L loop, U D loop, D U loop.
The infinitesimal generator of this array has integer entries and begins
      0;
      0,    0;
      4,    0,    0;
      0,   12,    0,    0;
    -12,    0,   24,    0,    0;
      0,  -60,    0,   40,    0,    0;
    160,    0, -180,    0,   60,    0,    0;
      0, 1120,    0, -420,    0,   84,    0,    0;
  -4620,    0, 4480,    0, -840,    0,  112,    0,    0;
  ...
It is the generalized exponential Riordan array [ 2*log(Bessel_I(0,2*x)), x ].
		

Crossrefs

A201805 gives row sums. Cf. A069466, A109187.

Programs

  • Maple
    T := (n, k) -> (1/2)*binomial(n, k)*binomial(n-k, floor((1/2)*n-(1/2)*k))^2*(1+(-1)^(n-k)):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    Table[Binomial[n, k] Binomial[n - k, Floor[(n - k)/2]]^2*(1 + (-1)^(n - k))/2, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 12 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n,k)*binomial(n-k,floor((n-k)/2))^2*(1 + (-1)^(n-k))/2, ", "))) \\ G. C. Greubel, Aug 16 2017

Formula

T(n,k) = binomial(n,k)*binomial(n-k,floor((n-k)/2))^2*(1 + (-1)^(n-k))/2.
T(n,n-2*k) = n/(n - 2*k)*T(n-1,n-2*k-1).
T(n,k) = the coefficient of t^k in the expansion of (t + X + 1/X + Y + 1/Y)^n.
T(n,k) = 1/Pi^2 * Integral_{y = 0..Pi} Integral_{x = 0..Pi} ( t + 2*cos(x) + 2*cos(y) )^n dx dy.
E.g.f.: exp(x*t)*Bessel_I(0,2*x)^2 = 1 + t*x + (4 + t^2)*x^2/2! + (12*t + t^3)*x^3/3! + (36 + 24*t^2 + t^4)*x^4/4! + ....
The n-th row polynomial R(n,t) = Sum_{k = 0..floor(n/2)} binomial(n,2*k)*binomial(2*k,k)^2 * t^(n-2*k).
Recurrence: n^2*R(n,t) = t*(3*n^2 - 3*n + 1)*R(n-1,t) + (16 - 3*t^2)*(n - 1)^2*R(n-2,t) + t*(t^2 - 16)*(n - 1)*(n - 2)*R(n-3,t) with R(0,t) = 1, R(1,t) = t and R(2,t) = 4 + t^2.
d/dt(R(n,t)) = n*R(n-1,t).
The zeros of the row polynomials appear to lie on the imaginary axis in the complex plane. Also, the zeros of R(n,t) and R(n+1,t) appear to interlace on the imaginary axis.

A328713 Constant term in the expansion of (1 + x + y + z + 1/x + 1/y + 1/z)^n.

Original entry on oeis.org

1, 1, 7, 19, 127, 511, 3301, 16297, 103279, 570367, 3595177, 21167917, 133789789, 818625133, 5207248879, 32649752779, 209258291599, 1333828204303, 8612806088761, 55546469634733, 361143420408337, 2349709451702737, 15370341546766939, 100695951740818903, 662213750028892429
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2019

Keywords

Comments

a(n) is the number of n-step closed walks (from origin to origin) in cubic lattice where each step changes at most one component by -1 or by +1. - Alois P. Heinz, Oct 26 2019

Examples

			(1+x+y+z+1/x+1/y+1/z)^2 = x^2 + 1/x^2 + y^2 + 1/y^2 + z^2 + 1/z^2 + 2 * (xy + 1/(xy) + yz + 1/(yz) + zx + 1/(zx) + x/y + y/x + y/z + z/y + z/x + x/z + x + 1/x + y + 1/y + z + 1/z) + 7. So a(2) = 7.
		

Crossrefs

Row 3 of A328718.

Programs

  • PARI
    {a(n) = polcoef(polcoef(polcoef((1+x+y+z+1/x+1/y+1/z)^n, 0), 0), 0)}

Formula

From Vaclav Kotesovec, Oct 26 2019: (Start)
Recurrence: n^3*a(n) = (2*n - 1)*(2*n^2 - 2*n + 1)*a(n-1) + (n-1)*(34*n^2 - 68*n + 41)*a(n-2) - 38*(n-2)*(n-1)*(2*n - 3)*a(n-3) - 105*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 7^(n + 3/2) / (8 * Pi^(3/2) * n^(3/2)). (End)
E.g.f.: exp(x) * BesselI(0,2*x)^3. - Ilya Gutkovskiy, Oct 26 2019

A361677 Constant term in the expansion of (1 + x + y + z + 1/(x*y) + 1/(y*z) + 1/(z*x))^n.

Original entry on oeis.org

1, 1, 1, 19, 73, 181, 1711, 10081, 38809, 256033, 1696861, 8388271, 49449511, 326195299, 1847392093, 10789655059, 69202030969, 418647580489, 2498113460881, 15735859252147, 97919649290053, 598317173139313, 3748943081117323
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(3*k)!/k!^3 * Binomial[3*k,k] * Binomial[n,3*k], {k,0,n/3}], {n,0,25}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!/k!^3*binomial(3*k, k)*binomial(n, 3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (3*k)!/k!^3 * binomial(3*k,k) * binomial(n,3*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 2*n^3*(2*n - 3)*a(n) = 2*(10*n^4 - 32*n^3 + 38*n^2 - 22*n + 5)*a(n-1) - 2*(n-1)*(2*n - 3)*(10*n^2 - 24*n + 17)*a(n-2) + (n-2)*(n-1)*(769*n^2 - 2331*n + 1594)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*(739*n - 1481)*a(n-4) + 733*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ sqrt(733/108 + 1/2^(2/3) + 9/2^(4/3)) * (1 + 9/2^(2/3))^n / (2 * Pi^(3/2) * n^(3/2)). (End)

A328494 Constant term in the expansion of (1+x+y+1/x+1/y)^n without assuming commutativity.

Original entry on oeis.org

1, 1, 5, 13, 53, 181, 713, 2689, 10661, 41989, 168785, 680329, 2770409, 11331529, 46639157, 192762013, 800228069, 3333843685, 13936599857, 58432259977, 245665962113, 1035412181761, 4373982501245, 18516210906853, 78536526586553, 333712398776281, 1420364536094093
Offset: 0

Views

Author

Robin Hankin, Oct 16 2019

Keywords

Comments

Related to A035610 which is the constant term of (x+y+1/x+1/y)^(2n).
If commutativity is assumed then the constant term of (1+x+y+1/x+1/y)^n is given by A201805(n). - Andrew Howroyd, Oct 25 2019

Crossrefs

Programs

  • Maple
    h := n -> GAMMA(n+1/2)/GAMMA(n+2)*hypergeom([2, 1-n], [n+2], -3):
    a := n -> 3-(-3)^n-5^n+(1/sqrt(Pi))*add(12^(k+1)*binomial(n, 2*k)*h(k), k=1..n/2):
    seq(simplify(a(n)), n=0..26); # Peter Luschny, Oct 25 2019
  • PARI
    a(n)={my(p=3/(1+2*sqrt(1-12*x+O(x*x^(n\2))))); sum(k=0, n\2, binomial(n, 2*k)*polcoef(p,k))} \\ Andrew Howroyd, Oct 25 2019
  • R
    library("freealg")
    g <- function(p,string){constant(as.freealg(string)^p)} sapply(0:7,g,"1+x+y+X+Y")
    

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*A035610(k). - Andrew Howroyd, Oct 25 2019

Extensions

Terms a(8) and beyond from Andrew Howroyd, Oct 25 2019

A361678 Constant term in the expansion of (1 + w + x + y + z + 1/(x*y*z) + 1/(w*y*z) + 1/(w*x*z) + 1/(w*x*y))^n.

Original entry on oeis.org

1, 1, 1, 1, 97, 481, 1441, 3361, 77281, 647137, 3195361, 11674081, 116286721, 1147935361, 7611379777, 37451144641, 263670781921, 2456043418081, 19073086806241, 115319128034017, 748239468100417, 6179458007222977, 50636218964639617, 350400618132423937
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(4*k)!/k!^4 * Binomial[4*k,k] * Binomial[n,4*k], {k,0,n/4}], {n,0,25}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!/k!^4*binomial(4*k, k)*binomial(n, 4*k));

Formula

a(n) = Sum_{k=0..floor(n/4)} (4*k)!/k!^4 * binomial(4*k,k) * binomial(n,4*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 3*n^4*(3*n - 8)*(3*n - 4)*a(n) = 3*(63*n^6 - 405*n^5 + 1015*n^4 - 1355*n^3 + 1049*n^2 - 439*n + 77)*a(n-1) - 3*(n-1)*(189*n^5 - 1485*n^4 + 4685*n^3 - 7575*n^2 + 6313*n - 2163)*a(n-2) + 3*(n-2)*(n-1)*(315*n^4 - 2610*n^3 + 8285*n^2 - 12030*n + 6749)*a(n-3) + (n-3)*(n-2)*(n-1)*(64591*n^3 - 385926*n^2 + 701651*n - 375786)*a(n-4) - 3*(n-4)*(n-3)*(n-2)*(n-1)*(65347*n^2 - 326519*n + 391384)*a(n-5) + 3*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(65473*n - 196383)*a(n-6) - 65509*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-7).
a(n) ~ sqrt(65563/12288 + 3*sqrt(3)/8 + sqrt(3/8 + 65563/(4096*sqrt(3)))) * (1 + 16/3^(3/4))^n / (Pi^2 * n^2). (End)

A138354 Central moment sequence of tr(A^4) in USp(4).

Original entry on oeis.org

1, 0, 3, 1, 21, 26, 215, 498, 2821, 9040, 43695, 165375, 752785, 3101970, 13881803, 59837183, 267860685, 1184749704, 5337504263, 23996776941, 108964583121, 495544446410, 2267450194443, 10402298479276, 47926692348121
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 16 2008, Mar 31 2008

Keywords

Comments

Binomial transform of A018224.
If A is a random matrix in the compact group USp(4) (4 X 4 complex are unitary and symplectic), then a(n)=E[(tr(A^4)+1)^n] is the n-th central moment of the trace of A^4, since E[tr(A^4)] = -1 (see A018224).

Examples

			a(3) = 1 because E[(tr(A^4)+1)^3] = 1.
a(3) = 1*A018224(0) + 3*A018224(1) + 3*A018224(2) + 1*A018224(1) = 1*1 + 3*(-1) + 3*4 + 1*(-9) = 1.
		

Crossrefs

Cf. A018224.

Programs

  • Mathematica
    a18224[n_] := Binomial[n, Floor[n/2]]^2;
    a[n_] := Sum[(-1)^i Binomial[n, i] a18224[i], {i, 0, n}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 13 2018 *)

Formula

a(n) = (1/2)*Integral_{x=0..Pi,y=0..Pi}(2cos(4x)+2cos(4y)+1)^n*(2cos(x)-2cos(y))^2*(2/Pi*sin^2(x))*(2/Pi*sin^2(y))dxdy.
a(n) = Sum_{i=0..n} (-1)^i binomial(n,i)*A018224(i). [corrected by Jean-François Alcover, Aug 13 2018]
a(n) = (5*A201805(n) - A201805(n+1))/4. - Mark van Hoeij, Nov 29 2024
Showing 1-8 of 8 results.