A150500
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 1), (0, 1, 0), (1, 1, -1), (1, 1, 1)}.
Original entry on oeis.org
1, 2, 7, 25, 101, 416, 1787, 7792, 34645, 155722, 707795, 3242515, 14963665, 69458000, 324102287, 1519028843, 7147771981, 33750528146, 159860887355, 759295147045, 3615520821281, 17255165910632, 82521746019487, 395404081034830, 1897886817388201, 9124229781131546, 43930513066698367, 211803668881914847
Offset: 0
-
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
A328718
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of (1 + x_1 + x_2 + ... + x_n + 1/x_1 + 1/x_2 + ... + 1/x_n)^k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 19, 13, 7, 1, 1, 1, 51, 61, 19, 9, 1, 1, 1, 141, 221, 127, 25, 11, 1, 1, 1, 393, 1001, 511, 217, 31, 13, 1, 1, 1, 1107, 4145, 3301, 921, 331, 37, 15, 1, 1, 1, 3139, 18733, 16297, 7761, 1451, 469, 43, 17, 1, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 3, 7, 19, 51, 141, 393, ...
1, 1, 5, 13, 61, 221, 1001, 4145, ...
1, 1, 7, 19, 127, 511, 3301, 16297, ...
1, 1, 9, 25, 217, 921, 7761, 41889, ...
1, 1, 11, 31, 331, 1451, 15101, 85961, ...
1, 1, 13, 37, 469, 2101, 26041, 153553, ...
A282252
Exponential Riordan array [Bessel_I(0,2*x)^2, x].
Original entry on oeis.org
1, 0, 1, 4, 0, 1, 0, 12, 0, 1, 36, 0, 24, 0, 1, 0, 180, 0, 40, 0, 1, 400, 0, 540, 0, 60, 0, 1, 0, 2800, 0, 1260, 0, 84, 0, 1, 4900, 0, 11200, 0, 2520, 0, 112, 0, 1, 0, 44100, 0, 33600, 0, 4536, 0, 144, 0, 1, 63504, 0, 220500, 0, 84000, 0, 7560, 0, 180, 0, 1
Offset: 0
The triangle begins
1;
0, 1;
4, 0, 1;
0, 12, 0, 1;
36, 0, 24, 0, 1;
0, 180, 0, 40, 0, 1;
400, 0, 540, 0, 60, 0, 1;
...
T(3,1) = 12: on the square lattice, let L, R, U, D denote a left step, right step, up step and down step respectively. The 12 walks of length 3 containing a single loop are
loop L R, loop R L, loop U D, loop D U,
L loop R, R loop L, U loop D, D loop U,
L R loop, R L loop, U D loop, D U loop.
The infinitesimal generator of this array has integer entries and begins
0;
0, 0;
4, 0, 0;
0, 12, 0, 0;
-12, 0, 24, 0, 0;
0, -60, 0, 40, 0, 0;
160, 0, -180, 0, 60, 0, 0;
0, 1120, 0, -420, 0, 84, 0, 0;
-4620, 0, 4480, 0, -840, 0, 112, 0, 0;
...
It is the generalized exponential Riordan array [ 2*log(Bessel_I(0,2*x)), x ].
-
T := (n, k) -> (1/2)*binomial(n, k)*binomial(n-k, floor((1/2)*n-(1/2)*k))^2*(1+(-1)^(n-k)):
seq(seq(T(n, k), k = 0..n), n = 0..9);
-
Table[Binomial[n, k] Binomial[n - k, Floor[(n - k)/2]]^2*(1 + (-1)^(n - k))/2, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 12 2017 *)
-
for(n=0,10, for(k=0,n, print1(binomial(n,k)*binomial(n-k,floor((n-k)/2))^2*(1 + (-1)^(n-k))/2, ", "))) \\ G. C. Greubel, Aug 16 2017
A328713
Constant term in the expansion of (1 + x + y + z + 1/x + 1/y + 1/z)^n.
Original entry on oeis.org
1, 1, 7, 19, 127, 511, 3301, 16297, 103279, 570367, 3595177, 21167917, 133789789, 818625133, 5207248879, 32649752779, 209258291599, 1333828204303, 8612806088761, 55546469634733, 361143420408337, 2349709451702737, 15370341546766939, 100695951740818903, 662213750028892429
Offset: 0
(1+x+y+z+1/x+1/y+1/z)^2 = x^2 + 1/x^2 + y^2 + 1/y^2 + z^2 + 1/z^2 + 2 * (xy + 1/(xy) + yz + 1/(yz) + zx + 1/(zx) + x/y + y/x + y/z + z/y + z/x + x/z + x + 1/x + y + 1/y + z + 1/z) + 7. So a(2) = 7.
A361677
Constant term in the expansion of (1 + x + y + z + 1/(x*y) + 1/(y*z) + 1/(z*x))^n.
Original entry on oeis.org
1, 1, 1, 19, 73, 181, 1711, 10081, 38809, 256033, 1696861, 8388271, 49449511, 326195299, 1847392093, 10789655059, 69202030969, 418647580489, 2498113460881, 15735859252147, 97919649290053, 598317173139313, 3748943081117323
Offset: 0
-
Table[Sum[(3*k)!/k!^3 * Binomial[3*k,k] * Binomial[n,3*k], {k,0,n/3}], {n,0,25}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = sum(k=0, n\3, (3*k)!/k!^3*binomial(3*k, k)*binomial(n, 3*k));
A328494
Constant term in the expansion of (1+x+y+1/x+1/y)^n without assuming commutativity.
Original entry on oeis.org
1, 1, 5, 13, 53, 181, 713, 2689, 10661, 41989, 168785, 680329, 2770409, 11331529, 46639157, 192762013, 800228069, 3333843685, 13936599857, 58432259977, 245665962113, 1035412181761, 4373982501245, 18516210906853, 78536526586553, 333712398776281, 1420364536094093
Offset: 0
-
h := n -> GAMMA(n+1/2)/GAMMA(n+2)*hypergeom([2, 1-n], [n+2], -3):
a := n -> 3-(-3)^n-5^n+(1/sqrt(Pi))*add(12^(k+1)*binomial(n, 2*k)*h(k), k=1..n/2):
seq(simplify(a(n)), n=0..26); # Peter Luschny, Oct 25 2019
-
a(n)={my(p=3/(1+2*sqrt(1-12*x+O(x*x^(n\2))))); sum(k=0, n\2, binomial(n, 2*k)*polcoef(p,k))} \\ Andrew Howroyd, Oct 25 2019
-
library("freealg")
g <- function(p,string){constant(as.freealg(string)^p)} sapply(0:7,g,"1+x+y+X+Y")
A361678
Constant term in the expansion of (1 + w + x + y + z + 1/(x*y*z) + 1/(w*y*z) + 1/(w*x*z) + 1/(w*x*y))^n.
Original entry on oeis.org
1, 1, 1, 1, 97, 481, 1441, 3361, 77281, 647137, 3195361, 11674081, 116286721, 1147935361, 7611379777, 37451144641, 263670781921, 2456043418081, 19073086806241, 115319128034017, 748239468100417, 6179458007222977, 50636218964639617, 350400618132423937
Offset: 0
-
Table[Sum[(4*k)!/k!^4 * Binomial[4*k,k] * Binomial[n,4*k], {k,0,n/4}], {n,0,25}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = sum(k=0, n\4, (4*k)!/k!^4*binomial(4*k, k)*binomial(n, 4*k));
A138354
Central moment sequence of tr(A^4) in USp(4).
Original entry on oeis.org
1, 0, 3, 1, 21, 26, 215, 498, 2821, 9040, 43695, 165375, 752785, 3101970, 13881803, 59837183, 267860685, 1184749704, 5337504263, 23996776941, 108964583121, 495544446410, 2267450194443, 10402298479276, 47926692348121
Offset: 0
a(3) = 1 because E[(tr(A^4)+1)^3] = 1.
a(3) = 1*A018224(0) + 3*A018224(1) + 3*A018224(2) + 1*A018224(1) = 1*1 + 3*(-1) + 3*4 + 1*(-9) = 1.
-
a18224[n_] := Binomial[n, Floor[n/2]]^2;
a[n_] := Sum[(-1)^i Binomial[n, i] a18224[i], {i, 0, n}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 13 2018 *)
Showing 1-8 of 8 results.
Comments