A202822 Numbers of the form 3*(x^2 + xy + y^2 + x + y) + 1 where x and y are integers.
1, 4, 7, 13, 16, 19, 25, 28, 31, 37, 43, 49, 52, 61, 64, 67, 73, 76, 79, 91, 97, 100, 103, 109, 112, 121, 124, 127, 133, 139, 148, 151, 157, 163, 169, 172, 175, 181, 193, 196, 199, 208, 211, 217, 223, 229, 241, 244, 247, 256, 259, 268, 271, 277, 283, 289, 292
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Joerg Arndt, Plane-filling curves on all uniform grids, arXiv preprint arXiv:1607.02433 [math.CO], 2016.
Programs
-
Haskell
a202822 n = a202822_list !! (n-1) a202822_list = filter ((== 1) . flip mod 3) a003136_list -- Reinhard Zumkeller, Nov 16 2015
-
Mathematica
nf[{i_,j_}]:=3(i^2+i*j+j^2+i+j)+1; Union[nf/@Tuples[Range[-10,10],2]] (* Harvey P. Dale, Dec 31 2011 *)
-
PARI
isA(n) = if(n%3 == 0, 0, 0 != sumdiv( n, d, kronecker( -3, d)))
-
PARI
x='x+O('x^500); p=eta(x)^3/eta(x^3); for(n=0, 499, if(polcoeff(p, n) != 0 && n%3==1, print1(n, ", "))) \\ Altug Alkan, Nov 18 2015
-
PARI
is(n)=(n%3==1) && #bnfisintnorm(bnfinit(z^2+z+1), n); \\ Joerg Arndt, Jan 04 2016
-
PARI
list(lim)=my(v=List(), y, t); for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, if((x-y)%3, listput(v, t)); y++)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017
Formula
A033685(n) != 0 if and only if n is in the set.
Comments