A202828
Expansion of e.g.f.: exp(4*x/(1-2*x)) / sqrt(1-4*x^2).
Original entry on oeis.org
1, 4, 36, 400, 5776, 97344, 1915456, 42406144, 1049760000, 28558296064, 848579961856, 27271456395264, 943132599095296, 34877026635366400, 1373536895379849216, 57351382681767706624, 2530646978003730497536, 117614221470591038521344, 5742190572014854792806400
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 36*x^2/3! + 400*x^3/3! + 5776*x^4/4! + 97344*x^5/5! +...
where A(x) = 1 + 2^2*x + 6^2*x^2/2! + 20^2*x^3/3! + 76^2*x^4/4! + 312^2*x^5/5! +...+ A000898(n)^2*x^n/n! +...
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(4*x/(1-2*x))/Sqrt(1-4*x^2) ))); // G. C. Greubel, Jun 21 2022
-
CoefficientList[Series[Exp[4*x/(1-2*x)]/Sqrt[1-4*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
-
{a(n)=n!*polcoeff(exp(4*x/(1-2*x)+x*O(x^n))/sqrt(1-4*x^2+x*O(x^n)),n)}
-
{a(n)=sum(k=0,n\2,2^(n-2*k)*n!/((n-2*k)!*k!))^2}
-
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
{a(n)=sum(k=0, n, Stirling1(n, k)*Bell(k)*2^k)^2}
-
def A202828_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(4*x/(1-2*x))/sqrt(1-4*x^2) ).egf_to_ogf().list()
A202828_list(40) # G. C. Greubel, Jun 21 2022
A202829
Expansion of e.g.f.: exp(4*x/(1-3*x)) / sqrt(1-9*x^2).
Original entry on oeis.org
1, 4, 49, 676, 13225, 293764, 7890481, 236359876, 8052729169, 300797402500, 12388985000401, 551925653637604, 26614517015830969, 1373655853915667716, 75803216516463190225, 4440662493517062816004, 275697752917311709134241, 18052104090118575573856516
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 49*x^2/2! + 676*x^3/3! + 13225*x^4/4! + 293764*x^5/5! + ...
were A(x) = 1 + 2^2*x + 7^2*x^2/2! + 26^2*x^3/3! + 115^2*x^4/4! + 542^2*x^5/5! + ... + A202830(n)^2*x^n/n! + ...
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(4*x/(1-3*x))/Sqrt(1-9*x^2) ))); // G. C. Greubel, Jun 21 2022
-
With[{nn=20},CoefficientList[Series[Exp[(4x)/(1-3x)]/Sqrt[1-9x^2],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Mar 09 2012 *)
-
{a(n)=n!*polcoeff(exp(4*x/(1-3*x)+x*O(x^n))/sqrt(1-9*x^2+x*O(x^n)),n)}
-
{a(n)=sum(k=0,n\2,2^(n-3*k)*3^k*n!/((n-2*k)!*k!))^2}
-
def A202829_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(4*x/(1-3*x))/sqrt(1-9*x^2) ).egf_to_ogf().list()
A202829_list(40) # G. C. Greubel, Jun 21 2022
A202831
Expansion of e.g.f.: exp(4*x/(1-5*x)) / sqrt(1-25*x^2).
Original entry on oeis.org
1, 4, 81, 1444, 44521, 1397124, 58354321, 2574344644, 136043683281, 7657406908804, 489836445798001, 33351743794661604, 2504378700538997881, 199445618093659242244, 17189578072429077875121, 1564487078400498014277124, 152146464623361858013314721
Offset: 0
E.g.f.: 1 + 4*x + 81*x^2/2! + 1444*x^3/3! + 44521*x^4/4! + 1397124*x^5/5! + ...
where A(x) = 1 + 2^2*x + 9^2*x^2/2! + 38^2*x^3/3! + 211^2*x^4/4! + 1182^2*x^5/5! + ... + A202832(n)^2*x^n/n! + ...
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(4*x/(1-5*x))/Sqrt(1-25*x^2) ))); // G. C. Greubel, Jun 21 2022
-
CoefficientList[Series[Exp[4*x/(1-5*x)]/Sqrt[1-25*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
-
{a(n)=n!*polcoeff(exp(4*x/(1-5*x)+x*O(x^n))/sqrt(1-25*x^2+x*O(x^n)),n)}
-
{a(n)=n!^2*polcoeff(exp(2*x+5*x^2/2+x*O(x^n)),n)^2}
-
{a(n)=sum(k=0,n\2,2^(n-3*k)*5^k*n!/((n-2*k)!*k!))^2}
-
def A202831_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(4*x/(1-5*x))/sqrt(1-25*x^2) ).egf_to_ogf().list()
A202831_list(40) # G. C. Greubel, Jun 21 2022
A202836
Expansion of e.g.f.: exp(9*x/(1-4*x)) / sqrt(1-16*x^2).
Original entry on oeis.org
1, 9, 169, 3969, 119025, 4173849, 169754841, 7764958161, 395853630561, 22158814509225, 1352182116776841, 89167147951863969, 6319166996322943569, 478498255838869322169, 38549853656690487255225, 3290600595687160597292529, 296613603422471046790496961
Offset: 0
E.g.f.: A(x) = 1 + 9*x + 169*x^2/2! + 3969*x^3/3! + 119025*x^4/4! + ...
where A(x) = 1 + 3^2*x + 13^2*x^2/2! + 63^2*x^3/3! + 345^2*x^4/4! + 2043^2*x^5/5! + ... + A202837(n)^2*x^n/n! + ...
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(9*x/(1-4*x))/Sqrt(1-16*x^2) ))); // G. C. Greubel, Jun 22 2022
-
CoefficientList[Series[Exp[9*x/(1-4*x)]/Sqrt[1-16*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
-
{a(n)=n!*polcoeff(exp(9*x/(1-4*x)+x*O(x^n))/sqrt(1-16*x^2+x*O(x^n)),n)}
-
{a(n)=n!^2*polcoeff(exp(3*x+2*x^2+x*O(x^n)),n)^2}
-
{a(n)=sum(k=0,n\2,3^(n-2*k)*2^k*n!/((n-2*k)!*k!))^2}
-
def A202836_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(9*x/(1-4*x))/sqrt(1-16*x^2) ).egf_to_ogf().list()
A202836_list(40) # G. C. Greubel, Jun 22 2022
A202827
Expansion of e.g.f.: exp(4*x/(1-x)) / sqrt(1-x^2).
Original entry on oeis.org
1, 4, 25, 196, 1849, 20164, 249001, 3422500, 51739249, 851822596, 15155825881, 289527934084, 5906625426025, 128089110981316, 2940882813228649, 71239270847432164, 1815115761586307041, 48511703775281296900, 1356708799439194070809, 39615996090901693902916
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 25*x^2/2! + 196*x^3/3! + 1849*x^4/4! +...
where A(x) = 1 + 2^2*x + 5^2*x^2/2! + 14^2*x^3/3! + 43^2*x^4/4! +...+ A005425(n)^2*x^n/n! +...
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(4*x/(1-x))/Sqrt(1-x^2) ))); // G. C. Greubel, Jun 21 2022
-
With[{nn=20},CoefficientList[Series[Exp[(4x)/(1-x)]/Sqrt[1-x^2], {x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Dec 31 2011 *)
-
{a(n)=n!*polcoeff(exp(4*x/(1-x)+x*O(x^n))/sqrt(1-x^2+x*O(x^n)),n)}
-
{a(n)=sum(k=0,n\2,2^(n-3*k)*n!/((n-2*k)!*k!))^2}
-
def A202827_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(4*x/(1-x))/sqrt(1-x^2) ).egf_to_ogf().list()
A202827_list(40) # G. C. Greubel, Jun 21 2022
A202835
Expansion of e.g.f.: exp(9*x/(1-2*x)) / sqrt(1-4*x^2).
Original entry on oeis.org
1, 9, 121, 2025, 40401, 927369, 24000201, 689220009, 21710549025, 743187098889, 27441452694681, 1086166287819369, 45846179189949681, 2054407698719865225, 97357866191666622441, 4862830945258077841449, 255239441235423753980481, 14040944744510973314880009
Offset: 0
E.g.f.: A(x) = 1 + 9*x + 121*x^2/2! + 2025*x^3/3! + 40401*x^4/4! +...
where A(x) = 1 + 3^2*x + 11^2*x^2/2! + 45^2*x^3/3! + 201^2*x^4/4! + 963^2*x^5/5! +...+ A083886(n)^2*x^n/n! +...
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(9*x/(1-2*x))/Sqrt(1-4*x^2) ))); // G. C. Greubel, Jun 21 2022
-
CoefficientList[Series[Exp[9*x/(1-2*x)]/Sqrt[1-4*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
-
{a(n)=n!*polcoeff(exp(9*x/(1-2*x)+x*O(x^n))/sqrt(1-4*x^2+x*O(x^n)),n)}
-
{a(n)=n!^2*polcoeff(exp(3*x+x^2+x*O(x^n)),n)^2}
-
{a(n)=sum(k=0,n\2,3^(n-2*k)*n!/((n-2*k)!*k!))^2}
-
def A202835_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(9*x/(1-2*x))/sqrt(1-4*x^2) ).egf_to_ogf().list()
A202835_list(40) # G. C. Greubel, Jun 21 2022
A202834
E.g.f.: exp(3*x + x^2/2).
Original entry on oeis.org
1, 3, 10, 36, 138, 558, 2364, 10440, 47868, 227124, 1112184, 5607792, 29057400, 154465704, 841143312, 4685949792, 26674999056, 155000193840, 918475565472, 5545430185536, 34087326300576, 213170582612448, 1355345600149440, 8755789617922176, 57440317657203648
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 10*x^2/2! + 36*x^3/3! + 138*x^4/4! + 558*x^5/5! +...
-
CoefficientList[Series[Exp[3*x + x^2/2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
-
{a(n)=n!*polcoeff(exp(3*x+x^2/2+x*O(x^n)),n)}
-
{a(n)=sum(k=0,n\2,3^(n-2*k)/2^k * n!/((n-2*k)!*k!))}
-
/* O.g.f. as a continued fraction: */
{a(n)=local(CF=1+3*x+x*O(x^n)); for(k=1, n-1, CF=1/(1-3*x-(n-k)*x^2*CF)); polcoeff(CF, n)}
Showing 1-7 of 7 results.
Comments