A202829
Expansion of e.g.f.: exp(4*x/(1-3*x)) / sqrt(1-9*x^2).
Original entry on oeis.org
1, 4, 49, 676, 13225, 293764, 7890481, 236359876, 8052729169, 300797402500, 12388985000401, 551925653637604, 26614517015830969, 1373655853915667716, 75803216516463190225, 4440662493517062816004, 275697752917311709134241, 18052104090118575573856516
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 49*x^2/2! + 676*x^3/3! + 13225*x^4/4! + 293764*x^5/5! + ...
were A(x) = 1 + 2^2*x + 7^2*x^2/2! + 26^2*x^3/3! + 115^2*x^4/4! + 542^2*x^5/5! + ... + A202830(n)^2*x^n/n! + ...
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(4*x/(1-3*x))/Sqrt(1-9*x^2) ))); // G. C. Greubel, Jun 21 2022
-
With[{nn=20},CoefficientList[Series[Exp[(4x)/(1-3x)]/Sqrt[1-9x^2],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Mar 09 2012 *)
-
{a(n)=n!*polcoeff(exp(4*x/(1-3*x)+x*O(x^n))/sqrt(1-9*x^2+x*O(x^n)),n)}
-
{a(n)=sum(k=0,n\2,2^(n-3*k)*3^k*n!/((n-2*k)!*k!))^2}
-
def A202829_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(4*x/(1-3*x))/sqrt(1-9*x^2) ).egf_to_ogf().list()
A202829_list(40) # G. C. Greubel, Jun 21 2022
A202831
Expansion of e.g.f.: exp(4*x/(1-5*x)) / sqrt(1-25*x^2).
Original entry on oeis.org
1, 4, 81, 1444, 44521, 1397124, 58354321, 2574344644, 136043683281, 7657406908804, 489836445798001, 33351743794661604, 2504378700538997881, 199445618093659242244, 17189578072429077875121, 1564487078400498014277124, 152146464623361858013314721
Offset: 0
E.g.f.: 1 + 4*x + 81*x^2/2! + 1444*x^3/3! + 44521*x^4/4! + 1397124*x^5/5! + ...
where A(x) = 1 + 2^2*x + 9^2*x^2/2! + 38^2*x^3/3! + 211^2*x^4/4! + 1182^2*x^5/5! + ... + A202832(n)^2*x^n/n! + ...
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(4*x/(1-5*x))/Sqrt(1-25*x^2) ))); // G. C. Greubel, Jun 21 2022
-
CoefficientList[Series[Exp[4*x/(1-5*x)]/Sqrt[1-25*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
-
{a(n)=n!*polcoeff(exp(4*x/(1-5*x)+x*O(x^n))/sqrt(1-25*x^2+x*O(x^n)),n)}
-
{a(n)=n!^2*polcoeff(exp(2*x+5*x^2/2+x*O(x^n)),n)^2}
-
{a(n)=sum(k=0,n\2,2^(n-3*k)*5^k*n!/((n-2*k)!*k!))^2}
-
def A202831_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(4*x/(1-5*x))/sqrt(1-25*x^2) ).egf_to_ogf().list()
A202831_list(40) # G. C. Greubel, Jun 21 2022
A202836
Expansion of e.g.f.: exp(9*x/(1-4*x)) / sqrt(1-16*x^2).
Original entry on oeis.org
1, 9, 169, 3969, 119025, 4173849, 169754841, 7764958161, 395853630561, 22158814509225, 1352182116776841, 89167147951863969, 6319166996322943569, 478498255838869322169, 38549853656690487255225, 3290600595687160597292529, 296613603422471046790496961
Offset: 0
E.g.f.: A(x) = 1 + 9*x + 169*x^2/2! + 3969*x^3/3! + 119025*x^4/4! + ...
where A(x) = 1 + 3^2*x + 13^2*x^2/2! + 63^2*x^3/3! + 345^2*x^4/4! + 2043^2*x^5/5! + ... + A202837(n)^2*x^n/n! + ...
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(9*x/(1-4*x))/Sqrt(1-16*x^2) ))); // G. C. Greubel, Jun 22 2022
-
CoefficientList[Series[Exp[9*x/(1-4*x)]/Sqrt[1-16*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
-
{a(n)=n!*polcoeff(exp(9*x/(1-4*x)+x*O(x^n))/sqrt(1-16*x^2+x*O(x^n)),n)}
-
{a(n)=n!^2*polcoeff(exp(3*x+2*x^2+x*O(x^n)),n)^2}
-
{a(n)=sum(k=0,n\2,3^(n-2*k)*2^k*n!/((n-2*k)!*k!))^2}
-
def A202836_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(9*x/(1-4*x))/sqrt(1-16*x^2) ).egf_to_ogf().list()
A202836_list(40) # G. C. Greubel, Jun 22 2022
A202827
Expansion of e.g.f.: exp(4*x/(1-x)) / sqrt(1-x^2).
Original entry on oeis.org
1, 4, 25, 196, 1849, 20164, 249001, 3422500, 51739249, 851822596, 15155825881, 289527934084, 5906625426025, 128089110981316, 2940882813228649, 71239270847432164, 1815115761586307041, 48511703775281296900, 1356708799439194070809, 39615996090901693902916
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 25*x^2/2! + 196*x^3/3! + 1849*x^4/4! +...
where A(x) = 1 + 2^2*x + 5^2*x^2/2! + 14^2*x^3/3! + 43^2*x^4/4! +...+ A005425(n)^2*x^n/n! +...
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(4*x/(1-x))/Sqrt(1-x^2) ))); // G. C. Greubel, Jun 21 2022
-
With[{nn=20},CoefficientList[Series[Exp[(4x)/(1-x)]/Sqrt[1-x^2], {x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Dec 31 2011 *)
-
{a(n)=n!*polcoeff(exp(4*x/(1-x)+x*O(x^n))/sqrt(1-x^2+x*O(x^n)),n)}
-
{a(n)=sum(k=0,n\2,2^(n-3*k)*n!/((n-2*k)!*k!))^2}
-
def A202827_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(4*x/(1-x))/sqrt(1-x^2) ).egf_to_ogf().list()
A202827_list(40) # G. C. Greubel, Jun 21 2022
A202833
Expansion of e.g.f.: exp(9*x/(1-x)) / sqrt(1-x^2).
Original entry on oeis.org
1, 9, 100, 1296, 19044, 311364, 5588496, 108993600, 2291345424, 51585311376, 1236953249856, 31447331115264, 844332494760000, 23859653712215616, 707522071322329344, 21958125453144843264, 711555574637600891136, 24025060090437573945600
Offset: 0
E.g.f.: A(x) = 1 + 9*x + 100*x^2/2! + 1296*x^3/3! + 19044*x^4/4! + ...
where A(x) = 1 + 3^2*x + 10^2*x^2/2! + 36^2*x^3/3! + 138^2*x^4/4! + ... + A202834(n)^2*x^n/n! + ...
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(9*x/(1-x))/Sqrt(1-x^2) ))); // G. C. Greubel, Jun 22 2022
-
With[{nn=20},CoefficientList[Series[Exp[((9x)/(1-x))]/Sqrt[1-x^2], {x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Apr 23 2012 *)
-
{a(n)=n!*polcoeff(exp(9*x/(1-x)+x*O(x^n))/sqrt(1-x^2+x*O(x^n)),n)}
-
{a(n)=n!^2*polcoeff(exp(3*x+x^2/2+x*O(x^n)),n)^2}
-
def A202833_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(9*x/(1-x))/sqrt(1-x^2) ).egf_to_ogf().list()
A202833_list(40) # G. C. Greubel, Jun 22 2022
A202835
Expansion of e.g.f.: exp(9*x/(1-2*x)) / sqrt(1-4*x^2).
Original entry on oeis.org
1, 9, 121, 2025, 40401, 927369, 24000201, 689220009, 21710549025, 743187098889, 27441452694681, 1086166287819369, 45846179189949681, 2054407698719865225, 97357866191666622441, 4862830945258077841449, 255239441235423753980481, 14040944744510973314880009
Offset: 0
E.g.f.: A(x) = 1 + 9*x + 121*x^2/2! + 2025*x^3/3! + 40401*x^4/4! +...
where A(x) = 1 + 3^2*x + 11^2*x^2/2! + 45^2*x^3/3! + 201^2*x^4/4! + 963^2*x^5/5! +...+ A083886(n)^2*x^n/n! +...
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(9*x/(1-2*x))/Sqrt(1-4*x^2) ))); // G. C. Greubel, Jun 21 2022
-
CoefficientList[Series[Exp[9*x/(1-2*x)]/Sqrt[1-4*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
-
{a(n)=n!*polcoeff(exp(9*x/(1-2*x)+x*O(x^n))/sqrt(1-4*x^2+x*O(x^n)),n)}
-
{a(n)=n!^2*polcoeff(exp(3*x+x^2+x*O(x^n)),n)^2}
-
{a(n)=sum(k=0,n\2,3^(n-2*k)*n!/((n-2*k)!*k!))^2}
-
def A202835_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(9*x/(1-2*x))/sqrt(1-4*x^2) ).egf_to_ogf().list()
A202835_list(40) # G. C. Greubel, Jun 21 2022
A123071
Bishops on a 2n+1 X 2n+1 board (see Robinson paper for details).
Original entry on oeis.org
1, 2, 4, 12, 36, 120, 400, 1520, 5776, 23712, 97344, 431808, 1915456, 9012608, 42406144, 210988800, 1049760000, 5475340800, 28558296064, 155672726528, 848579961856, 4810614454272, 27271456395264, 160376430784512, 943132599095296, 5735299537018880
Offset: 0
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence S(2k+1) eq(24) p. 210.]
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
-
For Maple program see A005635.
# alternative
# this is A000898, replicated as 1,1,2,2,6,6,20,20,76,76,...
B := proc(n)
if n=0 or n= -2 then
1 ;
elif type (n,'odd') then
procname(n-1) ;
else
2*procname(n-2)+(n-2)*procname(n-4) ;
end if;
end proc:
A123071 := proc(n)
B(n)*B(n+1) ;
end proc:
seq(A123071(n),n=0..20) ; # R. J. Mathar, Apr 02 2017
-
B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n-1], True, 2*B[n-2] + (n-2)*B[n-4]];
a[n_] := B[n]*B[n+1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 23 2022, after R. J. Mathar *)
A202878
Expansion of e.g.f.: exp(16*x/(1-x)) / sqrt(1-x^2).
Original entry on oeis.org
1, 16, 289, 5776, 126025, 2972176, 75186241, 2027520784, 57988974481, 1751546371600, 55668326576641, 1855807478279056, 64713593898036889, 2354701531657512976, 89209297718289390625, 3512141211682081889296, 143435878498076017059361
Offset: 0
E.g.f.: A(x) = 1 + 16*x + 289*x^2/2! + 5776*x^3/3! + 126025*x^4/4! + ...
where A(x) = 1 + 4^2*x + 17^2*x^2/2! + 76^2*x^3/3! + 355^2*x^4/4! + 1724^2*x^5/5! + ... + A202879(n)^2*x^n/n! + ...
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(16*x/(1-x))/Sqrt(1-x^2) ))); // G. C. Greubel, Jun 22 2022
-
CoefficientList[Series[Exp[16*x/(1-x)]/Sqrt[1-x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
-
{a(n)=n!*polcoeff(exp(16*x/(1-x)+x*O(x^n))/sqrt(1-x^2+x*O(x^n)),n)}
-
{a(n)=n!^2*polcoeff(exp(4*x+x^2/2+x*O(x^n)),n)^2}
-
def A202878_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(16*x/(1-x))/sqrt(1-x^2) ).egf_to_ogf().list()
A202878_list(40) # G. C. Greubel, Jun 22 2022
A387317
Number of good involutions of all nontrivial linear quandles of order n.
Original entry on oeis.org
1, 4, 1, 2, 1, 44, 1, 2, 1, 414, 1, 2, 31, 5784, 1, 2, 1, 97358, 237, 2, 1, 1917064, 1, 2, 1, 42406158, 1
Offset: 3
- Seiichi Kamada, Quandles with good involutions, their homologies and knot invariants, Intelligence of Low Dimensional Topology 2006, World Scientific Publishing Co. Pte. Ltd., 2007, 101-108.
Some terms corrected by
Luc Ta, Sep 03 2025
Showing 1-9 of 9 results.
Comments