cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A202829 Expansion of e.g.f.: exp(4*x/(1-3*x)) / sqrt(1-9*x^2).

Original entry on oeis.org

1, 4, 49, 676, 13225, 293764, 7890481, 236359876, 8052729169, 300797402500, 12388985000401, 551925653637604, 26614517015830969, 1373655853915667716, 75803216516463190225, 4440662493517062816004, 275697752917311709134241, 18052104090118575573856516
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + 4*x + 49*x^2/2! + 676*x^3/3! + 13225*x^4/4! + 293764*x^5/5! + ...
were A(x) = 1 + 2^2*x + 7^2*x^2/2! + 26^2*x^3/3! + 115^2*x^4/4! + 542^2*x^5/5! + ... + A202830(n)^2*x^n/n! + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(4*x/(1-3*x))/Sqrt(1-9*x^2) ))); // G. C. Greubel, Jun 21 2022
    
  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[(4x)/(1-3x)]/Sqrt[1-9x^2],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Mar 09 2012 *)
  • PARI
    {a(n)=n!*polcoeff(exp(4*x/(1-3*x)+x*O(x^n))/sqrt(1-9*x^2+x*O(x^n)),n)}
    
  • PARI
    {a(n)=sum(k=0,n\2,2^(n-3*k)*3^k*n!/((n-2*k)!*k!))^2}
    
  • SageMath
    def A202829_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(4*x/(1-3*x))/sqrt(1-9*x^2) ).egf_to_ogf().list()
    A202829_list(40) # G. C. Greubel, Jun 21 2022

Formula

a(n) = A202830(n)^2, where the e.g.f. of A202830 is exp(2*x + 3*x^2/2).
a(n) = ( Sum_{k=0..[n/2]} 2^(n-3*k)*3^k * n!/((n-2*k)!*k!) )^2.
a(n) ~ n^n*exp(4*sqrt(n/3)-2/3-n)*3^n/2. - Vaclav Kotesovec, May 23 2013
D-finite with recurrence: a(n) = (3*n+1)*a(n-1) + 3*(n-1)*(3*n+1)*a(n-2) - 27*(n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, May 23 2013

A202831 Expansion of e.g.f.: exp(4*x/(1-5*x)) / sqrt(1-25*x^2).

Original entry on oeis.org

1, 4, 81, 1444, 44521, 1397124, 58354321, 2574344644, 136043683281, 7657406908804, 489836445798001, 33351743794661604, 2504378700538997881, 199445618093659242244, 17189578072429077875121, 1564487078400498014277124, 152146464623361858013314721
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2011

Keywords

Examples

			E.g.f.: 1 + 4*x + 81*x^2/2! + 1444*x^3/3! + 44521*x^4/4! + 1397124*x^5/5! + ...
where A(x) = 1 + 2^2*x + 9^2*x^2/2! + 38^2*x^3/3! + 211^2*x^4/4! + 1182^2*x^5/5! + ... + A202832(n)^2*x^n/n! + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(4*x/(1-5*x))/Sqrt(1-25*x^2) ))); // G. C. Greubel, Jun 21 2022
    
  • Mathematica
    CoefficientList[Series[Exp[4*x/(1-5*x)]/Sqrt[1-25*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
  • PARI
    {a(n)=n!*polcoeff(exp(4*x/(1-5*x)+x*O(x^n))/sqrt(1-25*x^2+x*O(x^n)),n)}
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(2*x+5*x^2/2+x*O(x^n)),n)^2}
    
  • PARI
    {a(n)=sum(k=0,n\2,2^(n-3*k)*5^k*n!/((n-2*k)!*k!))^2}
    
  • SageMath
    def A202831_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(4*x/(1-5*x))/sqrt(1-25*x^2) ).egf_to_ogf().list()
    A202831_list(40) # G. C. Greubel, Jun 21 2022

Formula

a(n) = A202832(n)^2, where the e.g.f. of A202832 is exp(2*x + 5*x^2/2).
a(n) = ( Sum_{k=0..[n/2]} 2^(n-3*k)*5^k * n!/((n-2*k)!*k!) )^2.
a(n) ~ n^n*exp(4*sqrt(n/5)-2/5-n)*5^n/2. - Vaclav Kotesovec, May 23 2013
D-finite with recurrence: a(n) = (5*n-1)*a(n-1) + 5*(n-1)*(5*n-1)*a(n-2) - 125*(n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, May 23 2013

A202836 Expansion of e.g.f.: exp(9*x/(1-4*x)) / sqrt(1-16*x^2).

Original entry on oeis.org

1, 9, 169, 3969, 119025, 4173849, 169754841, 7764958161, 395853630561, 22158814509225, 1352182116776841, 89167147951863969, 6319166996322943569, 478498255838869322169, 38549853656690487255225, 3290600595687160597292529, 296613603422471046790496961
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + 9*x + 169*x^2/2! + 3969*x^3/3! + 119025*x^4/4! + ...
where A(x) = 1 + 3^2*x + 13^2*x^2/2! + 63^2*x^3/3! + 345^2*x^4/4! + 2043^2*x^5/5! + ... + A202837(n)^2*x^n/n! + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(9*x/(1-4*x))/Sqrt(1-16*x^2) ))); // G. C. Greubel, Jun 22 2022
    
  • Mathematica
    CoefficientList[Series[Exp[9*x/(1-4*x)]/Sqrt[1-16*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
  • PARI
    {a(n)=n!*polcoeff(exp(9*x/(1-4*x)+x*O(x^n))/sqrt(1-16*x^2+x*O(x^n)),n)}
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(3*x+2*x^2+x*O(x^n)),n)^2}
    
  • PARI
    {a(n)=sum(k=0,n\2,3^(n-2*k)*2^k*n!/((n-2*k)!*k!))^2}
    
  • SageMath
    def A202836_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(9*x/(1-4*x))/sqrt(1-16*x^2) ).egf_to_ogf().list()
    A202836_list(40) # G. C. Greubel, Jun 22 2022

Formula

a(n) = A202837(n)^2, where the e.g.f. of A202837 is exp(3*x + 2*x^2).
a(n) ~ n^n*exp(3*sqrt(n)-9/8-n)*2^(2*n-1) * (1+33/(32*sqrt(n))). - Vaclav Kotesovec, May 23 2013
D-finite with recurrence: a(n) = (4*n+5)*a(n-1) + 4*(n-1)*(4*n+5)*a(n-2) - 64*(n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, May 23 2013

A202827 Expansion of e.g.f.: exp(4*x/(1-x)) / sqrt(1-x^2).

Original entry on oeis.org

1, 4, 25, 196, 1849, 20164, 249001, 3422500, 51739249, 851822596, 15155825881, 289527934084, 5906625426025, 128089110981316, 2940882813228649, 71239270847432164, 1815115761586307041, 48511703775281296900, 1356708799439194070809, 39615996090901693902916
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + 4*x + 25*x^2/2! + 196*x^3/3! + 1849*x^4/4! +...
where A(x) = 1 + 2^2*x + 5^2*x^2/2! + 14^2*x^3/3! + 43^2*x^4/4! +...+ A005425(n)^2*x^n/n! +...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(4*x/(1-x))/Sqrt(1-x^2) ))); // G. C. Greubel, Jun 21 2022
    
  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[(4x)/(1-x)]/Sqrt[1-x^2], {x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Dec 31 2011 *)
  • PARI
    {a(n)=n!*polcoeff(exp(4*x/(1-x)+x*O(x^n))/sqrt(1-x^2+x*O(x^n)),n)}
    
  • PARI
    {a(n)=sum(k=0,n\2,2^(n-3*k)*n!/((n-2*k)!*k!))^2}
    
  • SageMath
    def A202827_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(4*x/(1-x))/sqrt(1-x^2) ).egf_to_ogf().list()
    A202827_list(40) # G. C. Greubel, Jun 21 2022

Formula

a(n) = A005425(n)^2, where the e.g.f. of A005425 is exp(2*x + x^2/2).
a(n) = ( Sum_{k=0..[n/2]} 2^(n-3*k)*n!/((n-2*k)!*k!) )^2. [From formula by Huajun Huang in A005425]
a(n) ~ n^n*exp(4*sqrt(n)-2-n)/2 * (1+5/(3*sqrt(n))). - Vaclav Kotesovec, May 23 2013
D-finite with recurrence: a(n) = (n+3)*a(n-1) +(n-1)*(n+3)*a(n-2) - (n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, May 23 2013

A202833 Expansion of e.g.f.: exp(9*x/(1-x)) / sqrt(1-x^2).

Original entry on oeis.org

1, 9, 100, 1296, 19044, 311364, 5588496, 108993600, 2291345424, 51585311376, 1236953249856, 31447331115264, 844332494760000, 23859653712215616, 707522071322329344, 21958125453144843264, 711555574637600891136, 24025060090437573945600
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + 9*x + 100*x^2/2! + 1296*x^3/3! + 19044*x^4/4! + ...
where A(x) = 1 + 3^2*x + 10^2*x^2/2! + 36^2*x^3/3! + 138^2*x^4/4! + ... + A202834(n)^2*x^n/n! + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(9*x/(1-x))/Sqrt(1-x^2) ))); // G. C. Greubel, Jun 22 2022
    
  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[((9x)/(1-x))]/Sqrt[1-x^2], {x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Apr 23 2012 *)
  • PARI
    {a(n)=n!*polcoeff(exp(9*x/(1-x)+x*O(x^n))/sqrt(1-x^2+x*O(x^n)),n)}
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(3*x+x^2/2+x*O(x^n)),n)^2}
    
  • SageMath
    def A202833_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(9*x/(1-x))/sqrt(1-x^2) ).egf_to_ogf().list()
    A202833_list(40) # G. C. Greubel, Jun 22 2022

Formula

a(n) = A202834(n)^2, where the e.g.f. of A202834 is exp(3*x + x^2/2).
a(n) = ( Sum_{k=0..[n/2]} 3^(n-2*k)/2^k * n!/((n-2*k)!*k!) )^2.
a(n) ~ n^n*exp(6*sqrt(n)-9/2-n)/2 * (1+15/(4*sqrt(n))). - Vaclav Kotesovec, May 23 2013
D-finite with recurrence: a(n) = (n+8)*a(n-1) + (n-1)*(n+8)*a(n-2) - (n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, May 23 2013

A202835 Expansion of e.g.f.: exp(9*x/(1-2*x)) / sqrt(1-4*x^2).

Original entry on oeis.org

1, 9, 121, 2025, 40401, 927369, 24000201, 689220009, 21710549025, 743187098889, 27441452694681, 1086166287819369, 45846179189949681, 2054407698719865225, 97357866191666622441, 4862830945258077841449, 255239441235423753980481, 14040944744510973314880009
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + 9*x + 121*x^2/2! + 2025*x^3/3! + 40401*x^4/4! +...
where A(x) = 1 + 3^2*x + 11^2*x^2/2! + 45^2*x^3/3! + 201^2*x^4/4! + 963^2*x^5/5! +...+ A083886(n)^2*x^n/n! +...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(9*x/(1-2*x))/Sqrt(1-4*x^2) ))); // G. C. Greubel, Jun 21 2022
    
  • Mathematica
    CoefficientList[Series[Exp[9*x/(1-2*x)]/Sqrt[1-4*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
  • PARI
    {a(n)=n!*polcoeff(exp(9*x/(1-2*x)+x*O(x^n))/sqrt(1-4*x^2+x*O(x^n)),n)}
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(3*x+x^2+x*O(x^n)),n)^2}
    
  • PARI
    {a(n)=sum(k=0,n\2,3^(n-2*k)*n!/((n-2*k)!*k!))^2}
    
  • SageMath
    def A202835_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(9*x/(1-2*x))/sqrt(1-4*x^2) ).egf_to_ogf().list()
    A202835_list(40) # G. C. Greubel, Jun 21 2022

Formula

a(n) = A083886(n)^2, where the e.g.f. of A083886 is exp(3*x + x^2).
a(n) = ( Sum_{k=0..[n/2]} 3^(n-2*k) * n!/((n-2*k)!*k!) )^2.
a(n) ~ n^n*exp(3*sqrt(2*n)-9/4-n)*2^(n-1). - Vaclav Kotesovec, May 23 2013
D-finite with recurrence: a(n) = (2*n+7)*a(n-1) + 2*(n-1)*(2*n+7)*a(n-2) - 8*(n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, May 23 2013

A123071 Bishops on a 2n+1 X 2n+1 board (see Robinson paper for details).

Original entry on oeis.org

1, 2, 4, 12, 36, 120, 400, 1520, 5776, 23712, 97344, 431808, 1915456, 9012608, 42406144, 210988800, 1049760000, 5475340800, 28558296064, 155672726528, 848579961856, 4810614454272, 27271456395264, 160376430784512, 943132599095296, 5735299537018880
Offset: 0

Views

Author

N. J. A. Sloane, Sep 28 2006

Keywords

Crossrefs

Programs

  • Maple
    For Maple program see A005635.
    # alternative
    # this is A000898, replicated as 1,1,2,2,6,6,20,20,76,76,...
    B := proc(n)
        if n=0 or n= -2 then
            1 ;
        elif type (n,'odd') then
            procname(n-1) ;
        else
            2*procname(n-2)+(n-2)*procname(n-4) ;
        end if;
    end proc:
    A123071 := proc(n)
        B(n)*B(n+1) ;
    end proc:
    seq(A123071(n),n=0..20) ; # R. J. Mathar, Apr 02 2017
  • Mathematica
    B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n-1], True, 2*B[n-2] + (n-2)*B[n-4]];
    a[n_] := B[n]*B[n+1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 23 2022, after R. J. Mathar *)

Formula

Conjecture: 2*a(n) +a(n-1) -2*n*a(n-2) +(-n-10)*a(n-3) -2*(n-2)*(n+2)*a(n-4) +(-n^2-2*n+23)*a(n-5) +2*(n-5)*(n^2-7*n+11)*a(n-6) +(n-6)*(n-5)^2*a(n-7)=0. - R. J. Mathar, Apr 02 2017

A202878 Expansion of e.g.f.: exp(16*x/(1-x)) / sqrt(1-x^2).

Original entry on oeis.org

1, 16, 289, 5776, 126025, 2972176, 75186241, 2027520784, 57988974481, 1751546371600, 55668326576641, 1855807478279056, 64713593898036889, 2354701531657512976, 89209297718289390625, 3512141211682081889296, 143435878498076017059361
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + 16*x + 289*x^2/2! + 5776*x^3/3! + 126025*x^4/4! + ...
where A(x) = 1 + 4^2*x + 17^2*x^2/2! + 76^2*x^3/3! + 355^2*x^4/4! + 1724^2*x^5/5! + ... + A202879(n)^2*x^n/n! + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(16*x/(1-x))/Sqrt(1-x^2) ))); // G. C. Greubel, Jun 22 2022
    
  • Mathematica
    CoefficientList[Series[Exp[16*x/(1-x)]/Sqrt[1-x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
  • PARI
    {a(n)=n!*polcoeff(exp(16*x/(1-x)+x*O(x^n))/sqrt(1-x^2+x*O(x^n)),n)}
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(4*x+x^2/2+x*O(x^n)),n)^2}
    
  • SageMath
    def A202878_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(16*x/(1-x))/sqrt(1-x^2) ).egf_to_ogf().list()
    A202878_list(40) # G. C. Greubel, Jun 22 2022

Formula

a(n) = A202879(n)^2, where the e.g.f. of A202879 is exp(4*x + x^2/2).
a(n) = ( Sum_{k=0..floor(n/2)} 4^(n-2*k)/2^k * n!/((n-2*k)!*k!) )^2.
a(n) ~ n^n*exp(8*sqrt(n)-8-n)/2 * (1+22/(3*sqrt(n))). - Vaclav Kotesovec, May 23 2013
D-finite with recurrence: a(n) = (n+15)*a(n-1) + (n-1)*(n+15)*a(n-2) - (n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, May 23 2013

A387317 Number of good involutions of all nontrivial linear quandles of order n.

Original entry on oeis.org

1, 4, 1, 2, 1, 44, 1, 2, 1, 414, 1, 2, 31, 5784, 1, 2, 1, 97358, 237, 2, 1, 1917064, 1, 2, 1, 42406158, 1
Offset: 3

Views

Author

Luc Ta, Aug 26 2025

Keywords

Comments

A linear quandle is a pair (Z/nZ, k) where k is a unit in Z/nZ, viewed as an Alexander quandle under the operation a(b) := ka + (1-k)b. A linear quandle is trivial if and only if k = 1.
A good involution f of a quandle Q is an involution that commutes with all inner automorphisms and satisfies the identity f(y)(x) = y^-1(x). The pair (Q,f) is called a symmetric quandle.

References

  • Seiichi Kamada, Quandles with good involutions, their homologies and knot invariants, Intelligence of Low Dimensional Topology 2006, World Scientific Publishing Co. Pte. Ltd., 2007, 101-108.

Crossrefs

Programs

  • GAP
    See Ta, GitHub link

Formula

If A060594(n) = 2, then a(n) = 1 if n is odd, a(n) = 4 if n = 4, and a(n) = 2 otherwise. See Ta, Ex. 5.8 and Prop. 5.9.
For all n >= 1, we have a(4n) >= A202828(n), with equality if and only if n = 1. See Ta, Thm. 5.11.

Extensions

Some terms corrected by Luc Ta, Sep 03 2025
Showing 1-9 of 9 results.