cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202994 a(n) = sigma(n^4).

Original entry on oeis.org

1, 31, 121, 511, 781, 3751, 2801, 8191, 9841, 24211, 16105, 61831, 30941, 86831, 94501, 131071, 88741, 305071, 137561, 399091, 338921, 499255, 292561, 991111, 488281, 959171, 797161, 1431311, 732541, 2929531, 954305, 2097151, 1948705, 2750971, 2187581
Offset: 1

Views

Author

Paul D. Hanna, Dec 27 2011

Keywords

Comments

Here sigma(n^4) denotes the sums of divisors of n^4.

Examples

			L.g.f.: L(x) = x + 31*x^2/2 + 121*x^3/3 + 511*x^4/4 + 781*x^5/5 + 3751*x^6/6 +...
where exp(L(x)) = 1 + x + 16*x^2 + 56*x^3 + 296*x^4 + 1052*x^5 + 4952*x^6 +...+ A202993(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1,Range[40]^4] (* Harvey P. Dale, Jan 29 2012 *)
    f[p_, e_] := (p^(4*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
  • PARI
    {a(n)=sigma(n^4)}
    
  • Python
    from math import prod
    from sympy import factorint
    def A202994(n): return prod((p**((e<<2)+1)-1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023

Formula

a(11*n) == 0 (mod 5) iff gcd(n,11) = 1.
Logarithmic derivative of A202993.
Multiplicative with a(p^e) = (p^(4*e+1)-1)/(p-1) for prime p. - Andrew Howroyd, Jul 23 2018
a(n) = A000203(A000583(n)). - Michel Marcus, Sep 10 2020
Sum_{k>=1} 1/a(k) = 1.04483665108279017775482622699860068916340892303889072390102812885655694752... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.3840585791... . - Amiram Eldar, Nov 05 2022

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018