A203483
a(n) = v(n+1)/v(n), where v = A203482.
Original entry on oeis.org
3, 56, 19500, 267841728, 236189890379520, 19303349192505048268800, 199126474924007956512865886208000, 339543987407937097660189431863908761600000000, 121553118121801544803671246298148699436481551316864204800000
Offset: 1
-
[(&*[Factorial(k) + Factorial(n+1): k in [1..n]]): n in [1..16]]; // G. C. Greubel, Aug 29 2023
-
(* First program *)
f[j_]:= j!; z = 10;
v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
d[n_]:= Product[(i-1)!, {i, n}] (* A000178 *)
Table[v[n], {n,z}] (* A203482 *)
Table[v[n+1]/v[n], {n,z-1}] (* this sequence *)
Table[v[n]/d[n], {n,10}] (* A203510 *)
(* Second program *)
Table[Product[k!+(n+1)!, {k,n}], {n,15}] (* G. C. Greubel, Aug 29 2023 *)
-
[product(factorial(k) + factorial(n+1) for k in range(1,n+1)) for n in range(1,16)] # G. C. Greubel, Aug 29 2023
Original entry on oeis.org
1, 3, 84, 273000, 3046699656000, 5996663814749677445376000, 160771799453017261771769947549079938007040000, 6351968589735888467306807912855132014808202373395298410963148996608000000
Offset: 1
-
BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
A203510:= func< n | n eq 1 select 1 else (&*[(&*[Factorial(j) + Factorial(k): k in [1..j-1]]): j in [2..n]])/BarnesG(n+1) >;
[A203510(n): n in [1..13]]; // G. C. Greubel, Feb 24 2024
-
f[j_] := j!; z = 10;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203482 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203483 *)
Table[v[n]/d[n], {n, 1, 10}] (* this sequence *)
Table[Product[j! + k!, {j, 1, n}, {k, 1, j-1}] / BarnesG[n+1], {n, 1, 10}] (* Vaclav Kotesovec, Nov 20 2023 *)
-
def BarnesG(n): return product(factorial(j) for j in range(1,n-1))
def A203510(n): return product(product(factorial(j)+factorial(k) for k in range(1,j)) for j in range(1,n+1))/BarnesG(n+1)
[A203510(n) for n in range(1,14)] # G. C. Greubel, Feb 24 2024
A093883
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
Original entry on oeis.org
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
A306729
a(n) = Product_{i=0..n, j=0..n} (i! + j!).
Original entry on oeis.org
2, 16, 5184, 9559130112, 109045776752640000000000, 27488263744928988967331390258832998400000000000, 1147897050240877062218236820013018349788772091106840426434074807527014400000000000000
Offset: 0
-
Table[Product[i! + j!, {i, 0, n}, {j, 0, n}], {n, 0, 7}]
Clear[a]; a[n_] := a[n] = If[n == 0, 2, a[n-1] * Product[k! + n!, {k, 0, n}]^2 / (2*n!)]; Table[a[n], {n, 0, 7}] (* Vaclav Kotesovec, Mar 27 2019 *)
Table[Product[Product[k! + j!, {k, 0, j}], {j, 1, n}]^2 / (2^(n-1) * BarnesG[n + 2]), {n, 0, 7}] (* Vaclav Kotesovec, Mar 27 2019 *)
-
from math import prod, factorial as f
def a(n): return prod(f(i)+f(j) for i in range(n) for j in range(n))
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Feb 16 2021
Showing 1-4 of 4 results.
Comments