cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203556 a(n) = sigma(n^5).

Original entry on oeis.org

1, 63, 364, 2047, 3906, 22932, 19608, 65535, 88573, 246078, 177156, 745108, 402234, 1235304, 1421784, 2097151, 1508598, 5580099, 2613660, 7995582, 7137312, 11160828, 6728904, 23854740, 12207031, 25340742, 21523360, 40137576, 21243690, 89572392, 29583456, 67108863
Offset: 1

Views

Author

Paul D. Hanna, Jan 03 2012

Keywords

Comments

a(n) modulo 6 begins: [1,3,4,1,0,0,0,3,1,0,0,4,0,0,0,1,0,3,0,0,0,0,0,0,1,0,...], in which positions of nonzero residues seem related to squares.

Examples

			L.g.f.: L(x) = x + 63/2*x^2 + 364/3*x^3 + 2047/4*x^4 + 3906/5*x^5 +...
where the g.f. of A203557 begins:
exp(L(x)) = 1 + x + 32*x^2 + 153*x^3 + 1145*x^4 + 5677*x^5 + 37641*x^6 +...
		

Crossrefs

Cf. A203557 (exp), A000203 (sigma), A000584, A013664.
Variants: A065764, A175926, A202994.

Programs

  • Mathematica
    f[p_, e_] := (p^(5*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 09 2020 *)
    DivisorSigma[1,Range[40]^5] (* Harvey P. Dale, Dec 05 2021 *)
  • PARI
    a(n) = sigma(n^5)

Formula

Logarithmic derivative of A203557.
Multiplicative with a(p^e) = (p^(5*e+1)-1)/(p-1) for prime p. - Andrew Howroyd, Jul 23 2018
From Amiram Eldar, Nov 05 2022: (Start)
a(n) = A000203(A000584(n)) = A000203(n^5).
Sum_{k=1..n} a(k) ~ c * n^6, where c = (zeta(6)/6) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4 + 1/p^5) = 0.3220880186... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018