A203556 a(n) = sigma(n^5).
1, 63, 364, 2047, 3906, 22932, 19608, 65535, 88573, 246078, 177156, 745108, 402234, 1235304, 1421784, 2097151, 1508598, 5580099, 2613660, 7995582, 7137312, 11160828, 6728904, 23854740, 12207031, 25340742, 21523360, 40137576, 21243690, 89572392, 29583456, 67108863
Offset: 1
Examples
L.g.f.: L(x) = x + 63/2*x^2 + 364/3*x^3 + 2047/4*x^4 + 3906/5*x^5 +... where the g.f. of A203557 begins: exp(L(x)) = 1 + x + 32*x^2 + 153*x^3 + 1145*x^4 + 5677*x^5 + 37641*x^6 +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p^(5*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 09 2020 *) DivisorSigma[1,Range[40]^5] (* Harvey P. Dale, Dec 05 2021 *)
-
PARI
a(n) = sigma(n^5)
Formula
Logarithmic derivative of A203557.
Multiplicative with a(p^e) = (p^(5*e+1)-1)/(p-1) for prime p. - Andrew Howroyd, Jul 23 2018
From Amiram Eldar, Nov 05 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^6, where c = (zeta(6)/6) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4 + 1/p^5) = 0.3220880186... . (End)
Extensions
Keyword:mult added by Andrew Howroyd, Jul 23 2018
Comments