cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A204765 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+239)^2 = y^2.

Original entry on oeis.org

0, 217, 220, 717, 1900, 1917, 4780, 11661, 11760, 28441, 68544, 69121, 166344, 400081, 403444, 970101, 2332420, 2352021, 5654740, 13594917, 13709160, 32958817, 79237560, 79903417, 192098640, 461830921, 465711820, 1119633501, 2691748444, 2714367981
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,217,220,717,1900,1917,4780}, 70]

Formula

G.f.: x^2*(119*x^5+x^4+119*x^3-497*x^2-3*x-217)/((x-1)*(x^6-6*x^3+1)). [Colin Barker, Aug 05 2012]

A205644 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+287)^2 = y^2.

Original entry on oeis.org

0, 25, 36, 205, 252, 273, 328, 705, 748, 861, 988, 1045, 1968, 2233, 2352, 2665, 4836, 5085, 5740, 6477, 6808, 12177, 13720, 14413, 16236, 28885, 30336, 34153, 38448, 40377, 71668, 80661, 84700, 95325, 169048, 177505, 199752, 224785, 236028, 418405, 470820
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[ {1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1}, {0,25,36,205,252,273,328,705,748,861,988,1045,1968,2233,2352,2665,4836,5085,5740}, 70]

Formula

G.f.: x^2*(23*x^17 +9*x^16 +91*x^15 +17*x^14 +7*x^13 +17*x^12 +91*x^11 +9*x^10 +23*x^9 -113*x^8 -43*x^7 -377*x^6 -55*x^5 -21*x^4 -47*x^3 -169*x^2 -11*x -25)/((x -1)*(x^18 -6*x^9 +1)). - Colin Barker, Aug 05 2012

A205672 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+329)^2 = y^2.

Original entry on oeis.org

0, 87, 112, 184, 235, 376, 451, 595, 660, 987, 1440, 1575, 1971, 2256, 3055, 3484, 4312, 4687, 6580, 9211, 9996, 12300, 13959, 18612, 21111, 25935, 28120, 39151, 54484, 59059, 72487, 82156, 109275, 123840, 151956, 164691, 228984, 318351, 345016, 423280
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[ {1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1}, {0,87,112,184,235,376,451,595,660,987,1440,1575,1971,2256,3055,3484,4312,4687,6580}, 120]

Formula

G.f.: x^2*(69*x^17 +15*x^16 +36*x^15 +21*x^14 +47*x^13 +21*x^12 +36*x^11 +15*x^10 +69*x^9 -327*x^8 -65*x^7 -144*x^6 -75*x^5 -141*x^4 -51*x^3 -72*x^2 -25*x -87)/((x-1)*(x^18 -6*x^9 +1)). - Colin Barker, Aug 05 2012

A323052 Numbers that are the sum of m = 5 successive primes and also the product of m = 5 (other) successive primes.

Original entry on oeis.org

2775683761181, 10945513774549181, 31285407706348267, 43861128120750079, 100441814079170659, 159395121707397143, 402260157804827743, 1340537842364790347, 4738876023641493659, 16292356006439865799, 48185685922249598383, 64649628495078140851, 74655966842055716569
Offset: 1

Views

Author

Zak Seidov, Jan 03 2019

Keywords

Examples

			For a(1) = 2775683761181, the first addend (summand) is prime(21350924509) = 555136752211, and the first factor is prime(62) = 293.
		

Crossrefs

Cf. A203619 (case m = 3).

Extensions

a(11) corrected and a(12)-a(13) added by Daniel Suteu, Jan 05 2019

A352065 a(n) is the least prime p that starts a run of 2n+1 consecutive primes whose product is a sum of the same number of (others or same) consecutive primes.

Original entry on oeis.org

2, 29, 293, 229, 3119, 67, 18121, 59629, 10247, 15391, 5903, 24007, 11783, 39359, 21013, 104917, 38273, 61129, 23663, 2423
Offset: 0

Views

Author

Jean-Marc Rebert, Mar 05 2022

Keywords

Examples

			a(0) = 2, because 2 = 2, and there is no smaller prime.
a(1) = 29, because 29 * 31 * 37 = 33263 = 11083 + 11087 + 11093, and there is no smaller prime that starts a run of 3 consecutive primes whose product is a sum of 3 consecutive primes.
a(2) = 293, because 293 * 307 * 311 * 313 * 317 = 2775683761181 = 555136752211 + 555136752221 + 555136752227 + 555136752251 + 555136752271, and there is no smaller prime that starts a run of 5 consecutive primes whose product is a sum of 5 consecutive primes.
Let y be the product of the 2n+1 consecutive primes starting with a(n) and let q be the first prime in the sum of 2n+1 consecutive primes. For n = 0..3 we have:
.
  n  2n+1  a(n)                  y  #dgts(y)                 q  #dgts(q)
  -  ----  ----  -----------------  --------  ----------------  --------
  0     1     2                  2         1                 2         1
  1     3    29              33263         5             11083         5
  2     5   293      2775683761181        13      555136752211        12
  3     7   229  52139749485151463        17  7448535640735789        16
.
For more examples, see the "doubleDecomposition" link.
		

Crossrefs

Programs

  • Python
    from math import prod
    from sympy import prime, nextprime, prevprime
    def A352065(n):
        plist = [prime(k) for k in range(1,2*n+2)]
        pd = prod(plist)
        while True:
            mlist = [nextprime(pd//(2*n+1)-1)]
            for _ in range(n):
                mlist = [prevprime(mlist[0])]+mlist+[nextprime(mlist[-1])]
            if sum(mlist) <= pd:
                while (s := sum(mlist)) <= pd:
                    if s == pd:
                        return plist[0]
                    mlist = mlist[1:]+[nextprime(mlist[-1])]
            else:
                while (s := sum(mlist)) >= pd:
                    if s == pd:
                        return plist[0]
                    mlist = [prevprime(mlist[0])]+mlist[:-1]
            pd //= plist[0]
            plist = plist[1:] + [nextprime(plist[-1])]
            pd *= plist[-1] # Chai Wah Wu, Apr 21 2022

Extensions

a(15)-a(19) from Chai Wah Wu, Apr 21 2022

A206854 Smallest integer m such that m is a product of 2n-1 consecutive primes and a sum of 2n-1 consecutive primes.

Original entry on oeis.org

2, 33263, 2775683761181, 52139749485151463, 31359251876786281892441299570699, 2385018819218440287149, 23509572623777698757692123744388316389653416929069870587, 436178570920976645136650311902311012102337977560516289614008518576769313, 166345108784858794943225366868487068031523855419640057875257310044811
Offset: 1

Views

Author

Zak Seidov, Feb 13 2012

Keywords

Comments

n=1: m = 2 (trivial case: product and sum of single prime, 2);
n=2: m = 33263 = product{29, 31, 37} = sum{11083, 11087, 11093};
n=3: m = 2775683761181 = product({293, 307, 311, 313, 317}) = sum({555136752211, 555136752221, 555136752227, 555136752251, 555136752271});
n=4: m = 52139749485151463=product({229, 233, 239, 241, 251, 257, 263})= sum({7448535640735789, 7448535640735843, 7448535640735867, 7448535640735877, 7448535640735991, 7448535640736009, 7448535640736087});
n=5: m = 31359251876786281892441299570699 = product({3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191}) = sum({3484361319642920210271255507593, 3484361319642920210271255507619, 3484361319642920210271255507719, 3484361319642920210271255507767, 3484361319642920210271255507923, 3484361319642920210271255507937, 3484361319642920210271255507941, 3484361319642920210271255508067, 3484361319642920210271255508133});
n=6: m = 2385018819218440287149 = product({67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109}) = sum({216819892656221844131, 216819892656221844133, 216819892656221844139, 216819892656221844169, 216819892656221844307, 216819892656221844331, 216819892656221844347, 216819892656221844373, 216819892656221844397, 216819892656221844401, 216819892656221844421}).

Crossrefs

Cf. A203619.

Programs

  • Maple
    scp:= proc(x,n) local P,i,s;
      P:= Vector(n);
      P[1]:= nextprime(ceil(x/n));
      for i from 2 to n do P[i]:= nextprime(P[i-1]) od;
      s:= convert(P,`+`);
      while s > x do
        s:= s - P[n];
        P[2..n]:= P[1..n-1];
        if P[2] = 2 then return false fi;
        P[1]:= prevprime(P[2]);
        s:= s + P[1];
      od;
      evalb(s=x)
    end proc:
    f:= proc(n) local i,P,r;
         P:= ;
         r:= convert(P,`*`);
         while not scp(r,2*n-1) do
           r:= r/P[1];
           P[1..2*n-2]:= P[2..2*n-1];
           P[2*n-1]:= nextprime(P[2*n-2]);
           r:= r*P[2*n-1];
         od;
    end proc:
    f(1):= 2:
    map(f, [$1..8]); # Robert Israel, Mar 13 2023

Extensions

a(7)-a(9) from Robert Israel, Mar 13 2023
Showing 1-6 of 6 results.