A005727
n-th derivative of x^x at x=1. Also called Lehmer-Comtet numbers.
Original entry on oeis.org
1, 1, 2, 3, 8, 10, 54, -42, 944, -5112, 47160, -419760, 4297512, -47607144, 575023344, -7500202920, 105180931200, -1578296510400, 25238664189504, -428528786243904, 7700297625889920, -146004847062359040, 2913398154375730560, -61031188196889482880
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 139, table at foot of page.
- G. H. Hardy, A Course of Pure Mathematics, 10th ed., Cambridge University Press, 1960, p. 428.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..400 (first 101 terms from T. D. Noe)
- Joerg Arndt, Matters Computational (The Fxtbook), section 36.5, "The function x^x"
- H. W. Gould, A Set of Polynomials Associated with the Higher Derivatives of y=xxy=x^x, Rocky Mountain J. Math. 26(2) 1996.
- R. K. Guy, Letter to N. J. A. Sloane, 1986
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- G. H. Hardy, A Course of Pure Mathematics, Cambridge, The University Press, 1908.
- D. H. Lehmer, Numbers associated with Stirling Numbers and x^x, Rocky Mountain J. Math., 15(2) 1985, p. 461.
- R. R. Patterson and G. Suri, The derivatives of x^x, date unknown. Preprint. [Annotated scanned copy]
-
A005727 := proc(n) option remember; `if`(n=0, 1, A005727(n-1)+add((-1)^(n-k)*(n-2-k)!*binomial(n-1, k)*A005727(k), k=0..n-2)) end:
seq(A005727(n), n=0..23); # Mélika Tebni, May 22 2022
-
NestList[ Factor[ D[ #1, x ] ]&, x^x, n ] /. (x->1)
Range[0, 22]! CoefficientList[ Series[(1 + x)^(1 + x), {x, 0, 22}], x] (* Robert G. Wilson v, Feb 03 2013 *)
-
a(n)=if(n<0,0,n!*polcoeff((1+x+x*O(x^n))^(1+x),n))
A185164
Coefficients of a set of polynomials associated with the derivatives of x^x.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 24, 40, 15, 120, 196, 105, 720, 1148, 700, 105, 5040, 7848, 5068, 1260, 40320, 61416, 40740, 12600, 945, 362880, 541728, 363660, 126280, 17325, 3628800, 5319072, 3584856, 1332100, 242550, 10395, 39916800, 57545280, 38764440, 15020720, 3213210, 270270
Offset: 2
Triangle begins
n\k.|.....1.....2.....3.....4
= = = = = = = = = = = = = = =
..2.|.....1
..3.|.....1
..4.|.....2.....3
..5.|.....6....10
..6.|....24....40....15
..7.|...120...196...105
..8.|...720..1148...700...105
..9.|..5040..7848..5068..1260
...
Fourth derivative of x^x:
x^(-x)*(d/dx)^4(x^x) = (1+log(x))^4 + C(4,2)/x^2*(1+log(x))^2*x - C(4,3)/x^3*(1+log(x)) + C(4,4)/x^4*(2*x + 3*x^2).
Example of recurrence relation for table entries:
T(7,2) = 4*T(6,2) + 6*T(5,1) = 4*40 + 6*6 = 196.
-
T[2,1]:= 1:
for n from 3 to 15 do
for k from 1 to floor(n/2) do
T[n,k]:= (n-1-k)*`if`(k<= floor((n-1)/2),T[n-1,k],0) + `if`(k>=2 and k-1 <= floor((n-2)/2),(n-1)*T[n-2,k-1],0)
od od:
seq(seq(T[n,k],k=1..floor(n/2)),n=2..15); # Robert Israel, Jan 13 2016
-
m = 14; F = Exp[t (x + (1-x) Log[1-x])];
cc = CoefficientList[# + O[t]^m, t]& /@ CoefficientList[F + O[x]^m, x]* Range[0, m - 1]!;
Rest /@ Drop[cc, 2] (* Jean-François Alcover, Jun 26 2019 *)
-
# uses[bell_transform from A264428]
# Computes the full triangle for n>=0 and 0<=k<=n.
def A185164_row(n):
g = lambda k: factorial(k-1) if k>0 else 0
s = [g(k) for k in (0..n)]
return bell_transform(n, s)
[A185164_row(n) for n in (0..10)] # Peter Luschny, Jan 13 2016
A293472
Triangle read by rows, coefficients of polynomials in t = log(x) of the n-th derivative of x^x, evaluated at x = 1. T(n, k) with n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 8, 12, 12, 4, 1, 10, 40, 30, 20, 5, 1, 54, 60, 120, 60, 30, 6, 1, -42, 378, 210, 280, 105, 42, 7, 1, 944, -336, 1512, 560, 560, 168, 56, 8, 1, -5112, 8496, -1512, 4536, 1260, 1008, 252, 72, 9, 1
Offset: 0
Triangle starts:
0: [ 1]
1: [ 1, 1]
2: [ 2, 2, 1]
3: [ 3, 6, 3, 1]
4: [ 8, 12, 12, 4, 1]
5: [ 10, 40, 30, 20, 5, 1]
6: [ 54, 60, 120, 60, 30, 6, 1]
7: [-42, 378, 210, 280, 105, 42, 7, 1]
...
For n = 3, the 3rd derivative of x^x is p(3,x,t) = x^x*t^3 + 3*x^x*t^2 + 3*x^x*t + x^x + 3*x^x*t/x + 3*x^x/x - x^x/x^2 where log(x) is substituted by t. Evaluated at x = 1: p(3,1,t) = 3 + 6*t + 3*t^2 + t^3 with coefficients [3, 6, 3, 1].
More generally, consider the n-th derivative of x^(x^m). This is case m = 1.
m | t = -1 | t = 0 | t = 1 | p(n, t) | related
-
dx := proc(m, n) if n = 0 then return [1] fi;
subs(ln(x) = t, diff(x^(x^m), x$n)): subs(x = 1, %):
PolynomialTools:-CoefficientList(%,t) end:
ListTools:-Flatten([seq(dx(1, n), n=0..10)]);
-
dx[m_, n_] := ReplaceAll[CoefficientList[ReplaceAll[Expand[D[x^x^m, {x, n}]], Log[x] -> t], t], x -> 1];
Table[dx[1, n], {n, 0, 7}] // Flatten
A276996
Numerators of coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x)/(k*(k-1)) with B_k(x) the Bernoulli polynomials.
Original entry on oeis.org
1, 0, 0, 1, -1, 1, 0, 1, -3, 1, 1, -1, 6, -10, 5, 0, -1, -15, 95, -40, 16, 239, -1, 13, -85, 240, -237, 79, 0, 403, 21, 385, -1575, 3577, -2947, 421, -46409, -239, 3841, 175, 861, -8036, 45458, -10692, 2673, 0, -82451, -2657, 56177, 1638, 19488, -85260, 139656, -86472, 19216
Offset: 0
Polynomials start:
p_0(x) = 1;
p_1(x) = 0;
p_2(x) = 1/6 + -x + x^2;
p_3(x) = (1/2)*x + -(3/2)*x^2 + x^3;
p_4(x) = 1/60 + -x + 6*x^2 + -10*x^3 + 5*x^4;
p_5(x) = -(1/6)*x + -(15/2)*x^2 + (95/3)*x^3 + -40*x^4 + 16*x^5;
p_6(x) = 239/504 + -(1/4)*x + (13/4)*x^2 + -85*x^3 + 240*x^4 + -237*x^5 + 79*x^6;
Triangle starts:
1;
0, 0;
1, -1, 1;
0, 1, -3, 1;
1, -1, 6, -10, 5;
0, -1, -15, 95, -40, 16;
239,-1, 13, -85, 240, -237, 79;
-
A276996_row := proc(n) local p;
p := (n,x) -> CompleteBellB(n,0,seq((k-2)!*bernoulli(k,x),k=2..n)):
seq(numer(coeff(p(n,x),x,k)), k=0..n) end:
seq(A276996_row(n), n=0..9);
# Recurrence for the polynomials:
A276996_poly := proc(n,x) option remember; local z;
if n = 0 then return 1 fi; z := proc(k) option remember;
if k=1 then 0 else (k-2)!*bernoulli(k,x) fi end;
expand(add(binomial(n-1,j)*z(n-j)*A276996_poly(j,x),j=0..n-1)) end:
for n from 0 to 5 do sort(A276996_poly(n,x)) od;
-
CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
p[n_, x_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, x], {k, 2, n}]]];
row[0] = {1}; row[1] = {0, 0}; row[n_] := CoefficientList[p[n, x], x] // Numerator;
Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
Showing 1-4 of 4 results.
Comments