cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A204089 The number of 1 by n Haunted Mirror Maze puzzles with a unique solution ending with a mirror, where mirror orientation is fixed.

Original entry on oeis.org

1, 1, 4, 14, 48, 164, 560, 1912, 6528, 22288, 76096, 259808, 887040, 3028544, 10340096, 35303296, 120532992, 411525376, 1405035520, 4797091328, 16378294272, 55918994432, 190919389184, 651839567872, 2225519493120, 7598398836736, 25942556360704, 88573427769344
Offset: 0

Views

Author

David Nacin, Jan 10 2012

Keywords

Comments

Apart from a leading 1, the same as A007070. - R. J. Mathar, Jan 16 2012
Since the uniqueness of a solution is unaffected by the orientation of the mirrors in this 1 by n case, we assume mirror orientation is fixed for this sequence.
Dropping the requirement that the board end with a mirror gives A204090. Allowing for mirror orientation gives A204091. Allowing for orientation and dropping the requirement gives A204092.

Examples

			For M(3) we would have the following possibilities:
('Z', 'Z', '/')
('Z', 'G', '/')
('Z', '/', '/')
('V', 'V', '/')
('V', 'G', '/')
('V', '/', '/')
('G', 'Z', '/')
('G', 'V', '/')
('G', 'G', '/')
('G', '/', '/')
('/', 'Z', '/')
('/', 'V', '/')
('/', 'G', '/')
('/', '/', '/')
		

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 4^(n-1) else 4*Self(n-1) - 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2022
    
  • Mathematica
    LinearRecurrence[{4,-2}, {1,1,4}, 31]
  • PARI
    Vec((1-x)*(1-2*x)/(1-4*x+2*x^2) + O(x^30)) \\ Michel Marcus, Dec 06 2015
    
  • Python
    def a(n, d={0:1, 1:4}):
        if n in d: return d[n]
        d[n] = 4*a(n-1) - 2*a(n-2)
        return d[n]
    print([1]+[a(n) for n in range(31)])
    
  • Python
    #Produces a(n) through enumeration and also displays boards:
    def Mprint(n):
     print('The following generate boards with a unique solution')
     s=0
     for x in product(['Z', 'V', 'G', '/'], repeat=n):
      if x[-1]=='/':
       #Splitting x up into a list pieces
       y=list(x)
       z=list()
       while y:
        #print(y)
        if '/' in y:
         if y[0] != '/': #Don't need to add blank pieces to z
          z.append(y[:y.index('/')])
         y=y[y.index('/')+1:]
        else:
         z.append(y)
         y=[]
       #For each element in the list checking for Z&V together
       goodword=True
       for w in z:
        if 'Z' in w and 'V' in w:
         goodword=False
       if goodword:
        s+=1
        print(x)
     return s
    
  • SageMath
    def A204089(n): return int(n==0) + 2^((n-1)/2)*chebyshev_U(n-1, sqrt(2))
    [A204089(n) for n in range(31)] # G. C. Greubel, Dec 21 2022

Formula

G.f.: (1-x)*(1-2*x)/(1-4*x+2*x^2).
a(n) = Sum_{i=0..n-1} a(i) * (2^(n-i)-1), with a(0)=1.
a(n) = 4*a(n-1) - 2*a(n-2), a(1)=1, a(2)=4.
G.f.: (1-x)*(1-2*x)/(1 - 4*x + 2*x^2) = 1/(1 + U(0)) where U(k)= 1 - 2^k/(1 - x/(x - 2^k/U(k+1) )); (continued fraction 3rd kind, 3-step). - Sergei N. Gladkovskii, Dec 05 2012
a(n) = ((2+sqrt(2))^n - (2-sqrt(2))^n)/(2*sqrt(2)). - Colin Barker, Dec 06 2015
a(n) = [n=0] + 2^((n-1)/2)*ChebyshevU(n-1, sqrt(2)). - G. C. Greubel, Dec 21 2022
E.g.f.: 1 + exp(2*x)*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, May 20 2024

A204090 The number of 1 X n Haunted Mirror Maze puzzles with a unique solution where mirror orientation is fixed.

Original entry on oeis.org

1, 2, 8, 34, 134, 498, 1786, 6274, 21778, 75074, 257762, 882946, 3020354, 10323714, 35270530, 120467458, 411394306, 1404773378, 4796567042, 16377245698, 55916897282, 190915194882, 651831179266, 2225502715906, 7598365282306, 25942489251842, 88573293551618
Offset: 0

Views

Author

David Nacin, Jan 10 2012

Keywords

Comments

Since the uniqueness of a solution is unaffected by the orientation of the mirrors in this 1 X n case, we assume mirror orientation is fixed for this sequence.
Connected to A204089, which counts the 1 X n boards with unique solutions that end in a mirror. Dropping the mirror orientation restriction would give A204092. Dropping the orientation restriction and requiring a mirror in the last slot gives A204091.

Examples

			For n=3 we would get the following 34 boards with unique solutions:
('Z', 'Z', '/')
('Z', 'G', '/')
('Z', '/', 'Z')
('Z', '/', 'V')
('Z', '/', 'G')
('Z', '/', '/')
('V', 'V', '/')
('V', 'G', '/')
('V', '/', 'Z')
('V', '/', 'V')
('V', '/', 'G')
('V', '/', '/')
('G', 'Z', '/')
('G', 'V', '/')
('G', 'G', 'G')
('G', 'G', '/')
('G', '/', 'Z')
('G', '/', 'V')
('G', '/', 'G')
('G', '/', '/')
('/', 'Z', 'Z')
('/', 'Z', 'G')
('/', 'Z', '/')
('/', 'V', 'V')
('/', 'V', 'G')
('/', 'V', '/')
('/', 'G', 'Z')
('/', 'G', 'V')
('/', 'G', 'G')
('/', 'G', '/')
('/', '/', 'Z')
('/', '/', 'V')
('/', '/', 'G')
('/', '/', '/')
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -16, 14, -4}, {1, 2, 8, 34}, 40]
  • PARI
    Vec((1-5*x+10*x^2-4*x^3) / ((1-x)*(1-2*x)*(1-4*x+2*x^2)) + O(x^30)) \\ Colin Barker, Nov 26 2016
  • Python
    def a(n, d={0:1,1:2,2:8,3:34}):
     if n in d:
      return d[n]
     d[n]=7*a(n-1) - 16*a(n-2) + 14*a(n-3) - 4*a(n-4)
     return d[n]
    
  • Python
    #Produces a(n) through enumeration and also displays boards:
    def Hprint(n):
     print('The following generate boards with a unique solution')
     s=0
     for x in product(['Z','V','G','/'],repeat=n):
      #Taking care of the no mirror case
      if '/' not in x:
       if 'Z' not in x and 'V' not in x:
        s+=1
        print(x)
      else:
       #Splitting x up into a list pieces
       y=list(x)
       z=list()
       while y:
        if '/' in y:
         if y[0] != '/': #Don't need to add blank pieces to z
          z.append(y[:y.index('/')])
         y=y[y.index('/')+1:]
        else:
         z.append(y)
         y=[]
       #For each element in the list checking for Z&V together
       goodword=True
       for w in z:
        if 'Z' in w and 'V' in w:
         goodword=False
       if goodword:
        s+=1
        print(x)
     return s
    

Formula

G.f.: (1 - 5*x + 10*x^2 - 4*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x + 2*x^2)).
a(n) = A204089(n+1) - 2^(n+1) + 2.
a(n) = 7*a(n-1) - 16*a(n-2) + 14*a(n-3) - 4*a(n-4), a(0)=1, a(1)=2, a(2)=8, a(3)=34.
a(n) = 2 - 2^(1+n) + ((2+sqrt(2))^(1+n) - (2-sqrt(2))^(1+n))/(2*sqrt(2)). - Colin Barker, Nov 26 2016

A204092 The number of 1 by n Haunted Mirror Maze puzzles with a unique solution.

Original entry on oeis.org

1, 3, 17, 91, 449, 2123, 9841, 45211, 206881, 945003, 4313297, 19680571, 89784449, 409577483, 1868351281, 8522666971, 38876763361, 177338745003, 808940722577, 3690027171451, 16832256509249, 76781232397643, 350241657358321, 1597645838773531, 7287745912705441
Offset: 0

Views

Author

David Nacin, Jan 10 2012

Keywords

Comments

Requiring the last slot contain a mirror results in A204091. Fixing orientation of mirrors results in A204090. Fixing orientation and requiring the last slot be a mirror results in A204089.

Examples

			The following 17 boards illustrate K(2):
('Z', '/')
('Z', '|')
('V', '/')
('V', '|')
('G', 'G')
('G', '/')
('G', '|')
('/', 'Z')
('/', 'V')
('/', 'G')
('/', '/')
('/', '|')
('|', 'Z')
('|', 'V')
('|', 'G')
('|', '/')
('|', '|')
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8, -19, 16, -4}, {1, 3, 17, 91}, 40]
  • Python
    def a(n, d={0:1,1:3,2:17,3:91}):
     if n in d:
      return d[n]
     d[n]=8*a(n-1) - 19*a(n-2) + 16*a(n-3) - 4*a(n-4)
     return d[n]
    
  • Python
    #Produces a(n) through enumeration and also displays boards:
    def Kprint(n):
     print('The following generate boards with a unique solution')
     s=0
     for x in product(['Z','V','G','/','|'],repeat=n):
      #Taking care of the no mirror case
      if '/' not in x and '|' not in x:
       if 'Z' not in x and 'V' not in x:
        s+=1
        print(x)
      else:
       #Splitting x up into a list pieces
       y=list(x)
       z=list()
       while y:
        if '/' in y or '|' in y:
         if '/' in y and '|' in y:
          m = min(y.index('/'), y.index('|'))
         else:
          if '/' in y:
           m=y.index('/')
          else:
           m=y.index('|')
         if y[0] not in ['/','|']: #Don't need to add blank pieces to z
          z.append(y[:m])
         y=y[m+1:]
        else:
         z.append(y)
         y=[]
       #For each element in the list checking for Z&V together
       goodword=True
       for w in z:
        if 'Z' in w and 'V' in w:
         goodword=False
       if goodword:
        s+=1
        print(x)
     return s

Formula

a(n) = A204091(n+1)/2 - 2^(n+1) + 2.
a(n) = 8*a(n-1) - 19*a(n-2) + 16*a(n-3) - 4*a(n-4), a(0) = 1, a(1) = 3, a(2) = 17, a(3) = 91.
G.f.: (1-5x+12x^2-4x^3)/((1-x)(1-2x)(1-5x+2x^2)).

A206306 Riordan array (1, x/(1-3*x+2*x^2)).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 06 2012

Keywords

Comments

The convolution triangle of the Mersenne numbers A000225. - Peter Luschny, Oct 09 2022

Examples

			Triangle begins:
  1;
  0,    1;
  0,    3,    1;
  0,    7,    6,     1;
  0,   15,   23,     9,     1;
  0,   31,   72,    48,    12,     1;
  0,   63,  201,   198,    82,    15,    1;
  0,  127,  522,   699,   420,   125,   18,    1;
  0,  255, 1291,  2223,  1795,   765,  177,   21,   1;
  0,  511, 3084,  6562,  6768,  3840, 1260,  238,  24,  1;
  0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k) // T = A206306
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return 0;
      else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
    
  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
  • SageMath
    def T(n,k): # T = A206306
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        elif (k==0): return 0
        else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022

Formula

Triangle T(n,k), read by rows, given by (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Diagonals sums are even-indexed Fibonacci numbers.
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A204089(n), A204091(n) for x = 0, 1, 2 respectively.
G.f.: (1-3*x+2*x^)/(1-(3+y)*x+2*x^2).
From Philippe Deléham, Nov 17 2013; corrected Feb 13 2020: (Start)
T(n, n) = 1.
T(n+1, n) = 3n = A008585(n).
T(n+2, n) = A062725(n).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), T(0,0)=T(1,1)=T(2,2)=1, T(1,0)=T(2,0)=0, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. (End)
From G. C. Greubel, Dec 20 2022: (Start)
Sum_{k=0..n} (-1)^k*T(n,k) = [n=1] - A009545(n).
Sum_{k=0..n} (-2)^k*T(n,k) = [n=1] + A078020(n+1).
T(2*n, n+1) = A045741(n+2), n >= 0.
T(2*n+1, n+1) = A244038(n). (End)
Showing 1-4 of 4 results.