cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A204580 Number of primes of the form A204142[i]*A204142[j]+2 (i,j <= n), larger than A204142[n].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 15, 17, 20, 24, 27, 30, 32, 32, 34, 36, 39, 41, 43, 46, 50, 51, 54, 60, 64, 68, 71, 76, 78, 80, 83, 86, 92, 93, 98, 101, 104, 106, 109, 113, 114, 117, 126, 128, 133, 135, 139, 143, 147, 150, 160, 166, 173, 181
Offset: 1

Views

Author

M. F. Hasler, Feb 11 2012

Keywords

Comments

It is not yet known whether there is a finite number of "good numbers" A204142. This is equivalent to the question whether this sequence will eventually decrease to zero.
One has a(100)=408, a(316)=2179, a(1000)=13136, a(3162)=86603, a(10000)=609377.

Programs

A063638 Primes p such that p-2 is a semiprime.

Original entry on oeis.org

11, 17, 23, 37, 41, 53, 59, 67, 71, 79, 89, 97, 113, 131, 157, 163, 179, 211, 223, 239, 251, 269, 293, 307, 311, 331, 337, 367, 373, 379, 383, 397, 409, 419, 439, 449, 487, 491, 499, 503, 521, 547, 593, 599, 613, 631, 673, 683, 691, 701, 709, 719, 733, 739
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2001

Keywords

Comments

Primes of form p*q + 2, where p and q are primes.
11 is the only prime of this form where p=q. For prime p>3, 3 divides p^2+2. - T. D. Noe, Mar 01 2006
The asymptotic growth of this sequence is relevant for A204142. We have a(10^k) = (11, 79, 1571, 27961, 407741, 5647823, ...). - M. F. Hasler, Feb 13 2012

Crossrefs

Programs

  • Haskell
    a063638 n = a063638_list !! (n-1)
    a063638_list = map (+ 2) $ filter ((== 1) . a064911) a040976_list
    -- Reinhard Zumkeller, Feb 22 2012
  • Mathematica
    Take[Select[ # + 2 & /@ Union[Flatten[Outer[Times, Prime[Range[100]], Prime[Range[100]]]]], PrimeQ], 60]
    Select[Prime[Range[200]],PrimeOmega[#-2]==2&] (* Paolo Xausa, Oct 30 2023 *)
  • PARI
    n=0; for (m=2, 10^9, p=prime(m); if (bigomega(p - 2) == 2, write("b063638.txt", n++, " ", p); if (n==1000, break))) \\ Harry J. Smith, Aug 26 2009
    
  • PARI
    forprime(p=3,9999, bigomega(p-2)==2 & print1(p","))
    
  • PARI
    p=2; for(n=1,1e4, until(bigomega(-2+p=nextprime(p+1))==2,); write("b063638.txt", n" "p)) \\ M. F. Hasler, Feb 13 2012
    
  • PARI
    list(lim)=my(v=List(), t); forprime(p=3, (lim-2)\3, forprime(q=3, min((lim-2)\p, p), t=p*q+2; if(isprime(t), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Aug 05 2016
    

Formula

a(n) = A241809(n) + 2. - Hugo Pfoertner, Oct 30 2023
Showing 1-2 of 2 results.