A204293 Pascal's triangle interspersed with rows of zeros, and the rows of Pascal's triangle are interspersed with zeros.
1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 6, 0, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 0, 15, 0, 20
Offset: 0
Links
- Reinhard Zumkeller, Rows n=0..100 of triangle, flattened
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- N. J. A. Sloane, Classic Sequences: Losanitsch's Triangle
- Eric Weisstein's World of Mathematics, Losanitsch's Triangle
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Haskell
a204293 n k = a204293_tabl !! n !! k a204293_row n = a204293_tabl !! n a204293_tabl = [1] : [0,0] : f [1] [0,0] where f xs ys = xs' : f ys xs' where xs' = zipWith (+) ([0,0] ++ xs) (xs ++ [0,0])
-
Mathematica
t[n_?EvenQ, k_?EvenQ] := Binomial[n/2, k/2]; t[, ] = 0; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Feb 07 2012 *)
Formula
T(n, k) = (1 - n mod 2) * (1 - k mod 2) * binomial(floor(n/2),floor(k/2)).
Extensions
Formula for T(n,k) corrected by Peter Bala, Jul 06 2015
Comments