cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A034851 Rows of Losanitsch's triangle T(n, k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 6, 6, 3, 1, 1, 3, 9, 10, 9, 3, 1, 1, 4, 12, 19, 19, 12, 4, 1, 1, 4, 16, 28, 38, 28, 16, 4, 1, 1, 5, 20, 44, 66, 66, 44, 20, 5, 1, 1, 5, 25, 60, 110, 126, 110, 60, 25, 5, 1, 1, 6, 30, 85, 170, 236, 236, 170, 85, 30, 6, 1, 1, 6, 36, 110, 255
Offset: 0

Views

Author

Keywords

Comments

Sometimes erroneously called "Lossnitsch's triangle". But the author's name is Losanitsch (I have seen the original paper in Chem. Ber.). This is a German version of the Serbian name Lozanic. - N. J. A. Sloane, Jun 29 2008
For n >= 3, a(n-3,k) is the number of series-reduced (or homeomorphically irreducible) trees which become a path P(k+1) on k+1 nodes, k >= 0, when all leaves are omitted (see illustration). Proof by Pólya's enumeration theorem. - Wolfdieter Lang, Jun 08 2001
The number of ways to put beads of two colors in a line, but take symmetry into consideration, so that 011 and 110 are considered the same. - Yong Kong (ykong(AT)nus.edu.sg), Jan 04 2005
Alternating row sums are 1,0,1,0,2,0,4,0,8,0,16,0,... - Gerald McGarvey, Oct 20 2008
The triangle sums, see A180662 for their definitions, link Losanitsch's triangle A034851 with several sequences, see the crossrefs. We observe that the Ze3 and Ze4 sums link Losanitsch's triangle with A005683, i.e., R. K. Guy's Twopins game. - Johannes W. Meijer, Jul 14 2011
T(n-(L-1)k, k) is the number of ways to cover an n-length line by exactly k L-length segments excluding symmetric covers. For L=2 it is corresponds to A102541, for L=3 to A228570 and for L=4 to A228572. - Philipp O. Tsvetkov, Nov 08 2013
Also the number of equivalence classes of ways of placing k 1 X 1 tiles in an n X 1 rectangle under all symmetry operations of the rectangle. - Christopher Hunt Gribble, Feb 16 2014
T(n, k) is the number of non-isomorphic outer planar graphs of order n+3, size n+3+k, and maximum degree k+2. - Christian Barrientos, Oct 18 2018
From Álvar Ibeas, Jun 01 2020: (Start)
T(n, k) is the sum of even-degree coefficients of the Gaussian polynomial [n, k]_q. The area below a NE lattice path between (0,0) and (k, n-k) is even for T(n, k) paths and odd for A034852(n, k) of them.
For a (non-reversible) string of k black and n-k white beads, consider the minimum number of bead transpositions needed to place the black ones to the left and the white ones to the right (in other words, the number of inversions of the permutation obtained by labeling the black beads by integers 1,...,k and the white ones by k+1,...,n, in the same order they take on the string). It is even for T(n, k) strings and odd for A034852(n, k) cases.
(End)
Named after the Serbian chemist, politician and diplomat Simeon Milivoje "Sima" Lozanić (1847-1935). - Amiram Eldar, Jun 10 2021
T(n, k) is the number of caterpillars with a perfect matching, with 2n+2 vertices and diameter 2n-1-k. - Christian Barrientos, Sep 12 2023

Examples

			Triangle begins
  1;
  1,  1;
  1,  1,  1;
  1,  2,  2,  1;
  1,  2,  4,  2,  1;
  1,  3,  6,  6,  3,  1;
  1,  3,  9, 10,  9,  3,  1;
  1,  4, 12, 19, 19, 12,  4,  1;
  1,  4, 16, 28, 38, 28, 16,  4,  1;
  1,  5, 20, 44, 66, 66, 44, 20,  5,  1;
		

Crossrefs

Triangle sums (see the comments): A005418 (Row), A011782 (Related to Row2), A102526 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23), A005207 (Kn3, Kn4), A005418 (Fi1, Fi2), A102543 (Ca1, Ca2), A192928 (Gi1, Gi2), A005683 (Ze3, Ze4).
Sums of squares of terms in rows equal A211208.

Programs

  • Haskell
    a034851 n k = a034851_row n !! k
    a034851_row 0 = [1]
    a034851_row 1 = [1,1]
    a034851_row n = zipWith (-) (zipWith (+) ([0] ++ losa) (losa ++ [0]))
                                ([0] ++ a204293_row (n-2) ++ [0])
       where losa = a034851_row (n-1)
    a034851_tabl = map a034851_row [0..]
    -- Reinhard Zumkeller, Jan 14 2012
  • Maple
    A034851 := proc(n,k) option remember; local t; if k = 0 or k = n then return(1) fi; if n mod 2 = 0 and k mod 2 = 1 then t := binomial(n/2-1,(k-1)/2) else t := 0; fi; A034851(n-1,k-1)+A034851(n-1,k)-t; end: seq(seq(A034851(n, k), k=0..n), n=0..11);
  • Mathematica
    t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2; t[n_, k_] := (Binomial[n, k] + Binomial[Quotient[n, 2], Quotient[k, 2]])/2; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]](* Jean-François Alcover, Feb 07 2012, after PARI *)
  • PARI
    {T(n, k) = (1/2) *(binomial(n, k) + binomial(n%2, k%2) * binomial(n\2, k\2))}; /* Michael Somos, Oct 20 1999 */
    

Formula

T(n, k) = (1/2) * (A007318(n, k) + A051159(n, k)).
G.f. for k-th column (if formatted as lower triangular matrix a(n, k)): x^k*Pe(floor((k+1)/2), x^2)/(((1-x)^(k+1))*(1+x)^(floor((k+1)/2))), where Pe(n, x^2) := Sum_{m=0..floor(n/2)} A034839(n, m)*x^(2*m) (row polynomials of Pascal array even numbered columns). - Wolfdieter Lang, May 08 2001
a(n, k) = a(n-1, k-1) + a(n-1, k) - C(n/2-1, (k-1)/2), where the last term is present only if n is even and k is odd (see Sloane link).
T(n, k) = T(n-2, k-2) + T(n-2, k) + C(n-2, k-1), n > 1.
Let P(n, x, y) = Sum_{m=0..n} a(n, m)*x^m*y^(n-m), then for x > 0, y > 0 we have P(n, x, y) = (x+y)*P(n-1, x, y) for n odd and P(n, x, y) = (x+y)*P(n-1, x, y) - x*y*(x^2+y^2)^((n-2)/2) for n even. - Gerald McGarvey, Feb 15 2005
T(n, k) = T(n-1, k-1) + T(n-1, k) - A204293(n-2, k-1), 0 < k <= n and n > 1. - Reinhard Zumkeller, Jan 14 2012
From Christopher Hunt Gribble, Feb 25 2014: (Start)
It appears that:
T(n,k) = C(n,k)/2, n even, k odd;
T(n,k) = (C(n,k) + C(n/2,k/2))/2, n even, k even;
T(n,k) = (C(n,k) + C((n-1)/2,(k-1)/2))/2, n odd, k odd;
T(n,k) = (C(n,k) + C((n-1)/2,k/2))/2, n odd, k even.
(End)

Extensions

More terms from James Sellers, May 04 2000
Name edited by Johannes W. Meijer, Aug 26 2013

A126869 a(n) = Sum_{k = 0..n} binomial(n,floor(k/2))*(-1)^(n-k).

Original entry on oeis.org

1, 0, 2, 0, 6, 0, 20, 0, 70, 0, 252, 0, 924, 0, 3432, 0, 12870, 0, 48620, 0, 184756, 0, 705432, 0, 2704156, 0, 10400600, 0, 40116600, 0, 155117520, 0, 601080390, 0, 2333606220, 0, 9075135300, 0, 35345263800, 0, 137846528820, 0, 538257874440, 0, 2104098963720, 0, 8233430727600, 0, 32247603683100, 0, 126410606437752, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2007

Keywords

Comments

Hankel transform is 2^n. Successive binomial transforms are A002426, A000984, A026375, A081671, A098409, A098410.
From Andrew V. Sutherland, Feb 29 2008: (Start)
Counts returning walks of length n on a 1-d integer lattice with step set {-1,+1}.
Moment sequence of the trace of a random matrix in G = SO(2). If X = tr(A) is a random variable (A distributed with Haar measure on G), then a(n) = E[X^n].
Also the moment sequence of the trace of the k-th power of a random matrix in USp(2) = SU(2), for all k > 2.
(End)
From Paul Barry, Aug 10 2009: (Start)
The Hankel transform of 0,1,0,2,0,6,... is 0,-1,0,4,0,-16,0,... with general term I*(-4)^(n/2)(1 - (-1)^n)/4, I = sqrt(-1).
The Hankel transform of 1,1,0,2,0,6,... (which has g.f. 1 + x/sqrt(1 - 4*x^2)) is A164111. (End)
a(n) = A204293(2*n,n): central terms of the triangle in A204293. - Reinhard Zumkeller, Jan 14 2012
a(n) is the total number of closed walks (round trips) of length n on the graph P_N (a line with N nodes and N-1 edges), divided by N, in the limit N -> infinity. See a comment on A198632 and a link under A201198. - Wolfdieter Lang, Oct 10 2012

Examples

			a(4) = 6 {UUDD,UDUD,UDDU,DUUD,DUDU,DDUU}.
		

References

  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

Crossrefs

This is A000984 with interspersed zeros. m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).

Programs

  • Haskell
    a126869 n = a204293_row (2*n) !! n  -- Reinhard Zumkeller, Jan 14 2012
    
  • Maple
    seq((-1)^(n/2)*pochhammer(-n,n/2)/(n/2)!, n=0..43); # Peter Luschny, May 17 2013
    seq(n!*coeff(series(hypergeom([],[1],x^2),x,n+1),x,n),n=0..42); # Peter Luschny, Jan 31 2015
  • Mathematica
    Table[(-1)^Floor[n/2] HypergeometricPFQ[{-n,-n},{1},-1],{n,0,30}] (* Peter Luschny, Nov 01 2011 *)
  • Sage
    A126869 = lambda n: (2^(n-1)*((-1)^n+1)*gamma((n+1)/2))/(sqrt(pi)*gamma((n+2)/2))
    [A126869(n) for n in range(44)] # Peter Luschny, Sep 10 2014

Formula

From Andrew V. Sutherland, Feb 29 2008: (Start)
a(2*n) = binomial(2*n,n) = A000984(n); a(2*n+1) = 0.
a(n) = Sum_{k = 0..n} A107430(n,k)*(-1)^(n-k).
a(n) = Sum_{k = 0..n} A061554(n,k)*(-1)^k.
a(n) = (1/Pi)*Integral_{t = 0..Pi} cos^n(t) dt. (End)
E.g.f.: I_0(2*x) where I_n(x) is the modified Bessel function as a function of x. - Benjamin Phillabaum, Mar 10 2011
G.f.: A(x) = 1/sqrt(1 - 4*x^2). - Vladimir Kruchinin, Apr 16 2011
a(n) = (1/Pi)*Integral{x = -2..2} x^n/sqrt((2 - x)*(2 + x)). - Peter Luschny, Sep 12 2011
a(n) = (-1)^floor(n/2) * Hypergeometric([-n,-n],[1], -1). - Peter Luschny, Nov 01 2011
E.g.f.: E(0)/(1 - x) where E(k) = 1 - x/(1 - x/(x - (k+1)^2/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
E.g.f.: 1 + x^2/(Q(0) - x^2), where Q(k) = x^2 + (k+1)^2 - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 28 2013
G.f.: 1/(1 - 2*x^2*Q(0)), where Q(k) = 1 + (4*k+1)*x^2/(k+1 - x^2*(2*k+2)*(4*k+3)/(2*x^2*(4*k+3) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)/(x*(2*k+1))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
G.f.: G(0)/(1+x), where G(k) = 1 + x*(2+5*x)*(4*k+1)/((4*k+2)*(1+x)^2 - 2*(2*k+1)*(4*k+3)*x*(2+5*x)*(1+x)^2/((4*k+3)*x*(2+5*x) + 4*(k+1)*(1+x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 19 2014
a(n) = 2^n*JacobiP(n,0,-1/2-n,-3). - Peter Luschny, Aug 02 2014
a(n) = (2^(n-1)*((-1)^n+1)*Gamma((n+1)/2))/(sqrt(Pi)*Gamma((n+2)/2)). - Peter Luschny, Sep 10 2014
a(n) = n!*[x^n]hypergeom([],[1],x^2). - Peter Luschny, Jan 31 2015
a(n) = 2^n*hypergeom([1/2,-n],[1],2). - Peter Luschny, Feb 03 2015
From Peter Bala, Jul 25 2016: (Start)
a(n) = (-1)^floor(n/2)*Sum_{k = 0..n} (-1)^k*binomial(n,k)^2.
D-finite with recurrence: a(n) = 4*(n - 1)/n * a(n-2) with a(0) = 1, a(1) = 0. (End)
From Ilya Gutkovskiy, Jul 25 2016: (Start)
Inverse binomial transform of A002426.
a(n) = Sum_{k=0..n} (-1)^k*A128014(k).
a(n) ~ 2^n*((-1)^n + 1)/sqrt(2*Pi*n). (End)

A077957 Powers of 2 alternating with zeros.

Original entry on oeis.org

1, 0, 2, 0, 4, 0, 8, 0, 16, 0, 32, 0, 64, 0, 128, 0, 256, 0, 512, 0, 1024, 0, 2048, 0, 4096, 0, 8192, 0, 16384, 0, 32768, 0, 65536, 0, 131072, 0, 262144, 0, 524288, 0, 1048576, 0, 2097152, 0, 4194304, 0, 8388608, 0, 16777216, 0, 33554432, 0, 67108864, 0, 134217728, 0, 268435456
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Normally sequences like this are not included, since with the alternating 0's deleted it is already in the database.
Inverse binomial transform of A001333. - Paul Barry, Feb 25 2003
"Sloping binary representation" of powers of 2 (A000079), slope=-1 (see A037095 and A102370). - Philippe Deléham, Jan 04 2008
0,1,0,2,0,4,0,8,0,16,... is the inverse binomial transform of A000129 (Pell numbers). - Philippe Deléham, Oct 28 2008
Number of maximal self-avoiding walks from the NW to SW corners of a 3 X n grid.
Row sums of the triangle in A204293. - Reinhard Zumkeller, Jan 14 2012
Pisano period lengths: 1, 1, 4, 1, 8, 4, 6, 1, 12, 8, 20, 4, 24, 6, 8, 1, 16, 12, 36, 8, ... . - R. J. Mathar, Aug 10 2012
This sequence occurs in the length L(n) = sqrt(2)^n of Lévy's C-curve at the n-th iteration step. Therefore, L(n) is the Q(sqrt(2)) integer a(n) + a(n-1)*sqrt(2), with a(-1) = 0. For a variant of this C-curve see A251732 and A251733. - Wolfdieter Lang, Dec 08 2014
a(n) counts walks (closed) on the graph G(1-vertex,2-loop,2-loop). Equivalently the middle entry (2,2) of A^n where the adjacency matrix of digraph is A=(0,1,0;1,0,1;0,1,0). - David Neil McGrath, Dec 19 2014
a(n-2) is the number of compositions of n into even parts. For example, there are 4 compositions of 6 into even parts: (6), (222), (42), and (24). - David Neil McGrath, Dec 19 2014
Also the number of alternately constant compositions of n + 2, ranked by A351010. The alternately strict version gives A000213. The unordered version is A035363, ranked by A000290, strict A035457. - Gus Wiseman, Feb 19 2022
a(n) counts degree n fixed points of GF(2)[x]'s automorphisms. Proof: given a field k, k[x]'s automorphisms are determined by k's automorphisms and invertible affine maps x -> ax + b. GF(2) is rigid and has only one unit so its only nontrivial automorphism is x -> x + 1. For n = 0 we have 1 fixed point, the constant polynomial 1. (Taking the convention that 0 is not a degree 0 polynomial.) For n = 1 we have 0 fixed points as x -> x + 1 -> x are the only degree 1 polynomials. Note that if f(x) is a fixed point, then f(x) + 1 is also a fixed point. Given f(x) a degree n fixed point, we can assume WLOG x | f(x). Applying the automorphism, we then have x + 1 | f(x). Now note that f(x) / (x^2 + x) must be a fixed point, so any fixed point of degree n must either be of the form g(x) * (x^2 + x) or g(x) * (x^2 + x) + 1 for a unique degree n - 2 fixed point g(x). Therefore we have the recurrence relation a(n) = 2 * a(n - 2) as desired. - Keith J. Bauer, Mar 19 2024

Crossrefs

Column k=3 of A219946. - Alois P. Heinz, Dec 01 2012
Cf. A016116 (powers repeated).

Programs

  • GAP
    Flat(List([0..30],n->[2^n,0])); # Muniru A Asiru, Aug 05 2018
  • Haskell
    a077957 = sum . a204293_row  -- Reinhard Zumkeller, Jan 14 2012
    
  • Magma
    &cat [[2^n,0]: n in [0..20]]; // Vincenzo Librandi, Apr 03 2018
    
  • Maple
    seq(op([2^n,0]),n=0..100); # Robert Israel, Dec 23 2014
  • Mathematica
    a077957[n_] := Riffle[Table[2^i, {i, 0, n - 1}], Table[0, {n}]]; a077957[29] (* Michael De Vlieger, Dec 22 2014 *)
    CoefficientList[Series[1/(1 - 2*x^2), {x,0,50}], x] (* G. C. Greubel, Apr 12 2017 *)
    LinearRecurrence[{0, 2}, {1, 0}, 54] (* Robert G. Wilson v, Jul 23 2018 *)
    Riffle[2^Range[0,30],0,{2,-1,2}] (* Harvey P. Dale, Jan 06 2022 *)
  • PARI
    a(n)=if(n<0||n%2, 0, 2^(n/2))
    
  • Sage
    def A077957():
        x, y = -1, 1
        while True:
            yield -x
            x, y = x + y, x - y
    a = A077957(); [next(a) for i in range(40)]  # Peter Luschny, Jul 11 2013
    

Formula

G.f.: 1/(1-2*x^2).
E.g.f.: cosh(x*sqrt(2)).
a(n) = (1 - n mod 2) * 2^floor(n/2).
a(n) = sqrt(2)^n*(1+(-1)^n)/2. - Paul Barry, May 13 2003
a(n) = 2*a(n-2) with a(0)=1, a(1)=0. - Jim Singh, Jul 12 2018

A108044 Triangle read by rows: right half of Pascal's triangle (A007318) interspersed with 0's.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 6, 0, 4, 0, 1, 0, 10, 0, 5, 0, 1, 20, 0, 15, 0, 6, 0, 1, 0, 35, 0, 21, 0, 7, 0, 1, 70, 0, 56, 0, 28, 0, 8, 0, 1, 0, 126, 0, 84, 0, 36, 0, 9, 0, 1, 252, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1, 0, 462, 0, 330, 0, 165, 0, 55, 0, 11, 0, 1, 924, 0, 792, 0, 495, 0, 220, 0, 66
Offset: 0

Views

Author

N. J. A. Sloane, Jun 02 2005

Keywords

Comments

Column k has e.g.f. Bessel_I(k,2x). - Paul Barry, Mar 10 2010
T(n,k) is the number of binary sequences of length n in which the number of ones minus the number of zeros is k. If 2 divides(n+k), such a sequence will have (n+k)/2 ones and (n-k)/2 zeros. Since there are C(n,(n+k)/2) ways to choose the sequence entries that get a one, T(n,k)=binomial(n,(n+k)/2) whenever (n+k) is even and T(n,k)= 0 otherwise. See the example below in the example section. - Dennis P. Walsh, Apr 11 2012
T(n,k) is the number of walks on the semi-infinite integer line with n steps that end at k. The walks start at 0, move at each step either one to the left or one to the right, and never enter the region of negative k. [Walks with impenetrable wall at -1/2. Dyck excursions of n steps that end at level k.] The variant without the restriction of negative positions is A053121. - R. J. Mathar, Nov 02 2023

Examples

			Triangle begins:
  1
  0 1
  2 0 1
  0 3 0 1
  6 0 4 0 1
  0 10 0 5 0 1
  20 0 15 0 6 0 1
From _Paul Barry_, Mar 10 2010: (Start)
Production matrix is
  0, 1,
  2, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 0, 0, 1, 0, 1 (End)
T(5,1)=10 since there are 10 binary sequences of length 5 in which the number of ones exceed the number of zeros by exactly 1, namely, 00111, 01011, 01101, 01110, 10011, 10101, 10110, 11001, 11010, and 11100. Also, T(5,2)=0 since there are no binary sequences in which the number of ones exceed the number of zeros by exactly 2. - _Dennis P. Walsh_, Apr 11 2012
		

Crossrefs

Cf. A007318, A108045 (matrix inverse),
Cf. A204293, A357136, A000984 (column 0), A001700 (column 1), A001791 (column 2), A002054 (column 3)

Programs

  • Haskell
    import Data.List (intersperse)
    a108044 n k = a108044_tabl !! n !! k
    a108044_row n = a108044_tabl !! n
    a108044_tabl = zipWith drop [0..] $ map (intersperse 0) a007318_tabl
    -- Reinhard Zumkeller, May 18 2013
  • Maple
    T:=proc(n,k) if n+k mod 2 = 0 then binomial(n,(n+k)/2) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Jun 05 2005
  • Mathematica
    b[n_,k_]:=If[EvenQ[n+k],Binomial[n,(n+k)/2],0]; Flatten[Table[b[n,k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, May 05 2013 *)

Formula

Each entry is the sum of those in the previous row that are to its left and to its right.
Riordan array (1/sqrt(1-4*x^2), (1-sqrt(1-4*x^2))/(2*x)).
T(n, k) = binomial(n, (n+k)/2) if n+k is even, T(n, k)=0 if n+k is odd. G.f.=f/(1-tg), where f=1/sqrt(1-4x^2) and g=(1-sqrt(1-4x^2))/(2x). - Emeric Deutsch, Jun 05 2005
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = ( 1 - sqrt(1 - 4*x) )/(2*x) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = 1 + x^2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ).
The inverse array is A108045 (a hitting time array with h(x) = x/(1 + x^2)). (End)

Extensions

More terms from Emeric Deutsch and Christian G. Bower, Jun 05 2005

A260492 Pascal's triangle aerated with columns of zeros.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 1, 0, 3, 0, 3, 0, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1, 1, 0, 6, 0, 15, 0, 20, 0, 15, 0, 6, 0, 1, 1, 0, 7, 0, 21, 0, 35, 0, 35, 0, 21, 0, 7, 0, 1, 1, 0, 8, 0, 28, 0, 56, 0, 70, 0, 56, 0, 28, 0, 8, 0, 1, 1, 0, 9, 0, 36, 0, 84, 0, 126, 0, 126, 0, 84, 0, 36, 0, 9, 0, 1, 1, 0, 10, 0, 45, 0, 120, 0, 210, 0, 252, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1
Offset: 0

Views

Author

Peter Bala, Aug 15 2015

Keywords

Comments

To obtain this array we take Pascal's triangle A007318 and insert a column of zeros at columns 1, 3, 5, .... Thus the n-th row of this array gives the coefficients in the expansion of (1 + x^2)^n.
The transpose of this array is a generalized Riordan array (1, 1 + x^2) as defined by Wilson in 2005 (see the Bala link for details). Note that these are not the same as the generalized Riordan arrays introduced by Wang and Wang in 2008.
Call this array C and let p(x) = 1 + x^2. Then C^2 gives the coefficients in the expansion of the polynomials ( p(p(x)) )^n, C^3 gives the coefficients in the expansion of the polynomials ( p(p(p(x))) )^n and so on.
See A204293 for Pascal's triangle aerated by both row and columns.
The triangle is read by rows of lengths equal to the odd numbers 2*n + 1 = A005408(n), n >= 0; although it is then (from the 3rd line of comments & formula on) considered as an infinite square matrix C, the upper right being filled with zeros. - M. F. Hasler, Aug 19 2015

Examples

			Table begins
n\k 0  1  2  3  4  5  6  7  8  9 10 11 12
- - - - - - - - - - - - - - - - - - - - -
0   1
1   1  0  1
2   1  0  2  0  1
3   1  0  3  0  3  0  1
4   1  0  4  0  6  0  4  0  1
5   1  0  5  0 10  0 10  0  5  0  1
6   1  0  6  0 15  0 20  0 15  0  6  0  1
...
		

Crossrefs

Programs

  • Maple
    #A260492
    #define the aerated Pascal matrix (with indexing starting at 1)
    C := Matrix(30, 30, (i,j) -> (1 - mod(j-1, 2))*binomial(i-1, floor((j-1)/2))):
    for n from 1 to 12 do seq(C(n, k), k = 1 .. 2*n-1) end do;
    # alternative program using row polynomials
    rowpoly:= proc(n) option remember; expand((1 + x^2)^n) end:
    T := (n, k)-> coeff(rowpoly(n), x, k):
    seq(seq(T(n, k), k = 0..2*n), n = 0..11);
  • Mathematica
    T[n_, k_] := If[OddQ[k], 0, Binomial[n, k/2]];
    Table[T[n, k], {n, 0, 10}, {k, 0, 2n}] // Flatten (* Jean-François Alcover, Mar 23 2018 *)
  • PARI
    C=matrix(20,20,m,n,if(n%2,binomial(m-1,n\2))); a=concat(vector(5,i,vector(i*2-1,j,C[i,j]))) \\ (C is read by rows, not antidiagonals.) - M. F. Hasler, Aug 19 2015

Formula

T(n,k) = (1 - k mod 2) binomial(n,floor(k/2)).
O.g.f.: 1/(1 - (1 + x^2)*t) = 1 + (1 + x^2)*t + (1 + 2*x^2 + x^4)*t^2 + ....
Let C denote this array.
Row sums of C = 2^n; Row sums of C^2 = 5^n; Row sums of C^3 = 26^n; Row of sums C^4 = 677^n. In general the row sums of C^m = A003095(m)^n.
First column of C^2 = 2^n; first column of C^3 = 5^n, first column of C^4 = 26^n and so on.
Let P denote Pascal's triangle A007318. Then C * transpose(C) = P * transpose(P) = the square symmetric Pascal matrix.
For n >= 0, (P^n)*C is the array P^(n+1) aerated by columns.
First column of P*C = 2^n; first column of (P*C)^2 = 6^n; first column of (P*C)^3 = 38^n, and so on, where [2, 6, 38, ...] is A072191.
Let R equal Pascal's triangle aerated with rows of zeros. Then C*R = P^2.
R*P*C is P^3 aerated by both rows and columns
Conjecturally, the limit of R^n * C^n as n -> oo has as its first column an aerated version of A027826, with zeros elsewhere in the array.
Aeration by rows/columns amounts to multiplication to the left/right by the identity matrix aerated by rows/column: R = J*P, C = P*J'. This makes obvious that P^n*C = P^(n+1)*J', R*P^n = J*P^(n+1), R*P^n*C = J*P^(n+2)*J' (aerated by both rows and columns). - M. F. Hasler, Aug 19 2015
Showing 1-5 of 5 results.